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Abstract

We study nonlinear approximation inLp(R2), 0<p<∞, from n-term rational functions. Our
main result relatesn-term rational approximation inLp to nonlinear approximation froma broad class
of piecewise polynomials over multilevel triangulations allowing a lot of flexibility and, in particular,
arbitrarily sharp angles. This relationship and the existing estimates for spline approximation give a
Jackson estimate forn-term rational approximation in terms of a minimal smoothness norm over a
large collection of anisotropic Besov-type spaces (B-spaces).
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

While the theory of univariate rational approximation is considerablywell developed area
in Approximation theory (see, e.g.,[9]), the theory of multivariate rational approximation
is just emerging. The reason for this is that it is extremely hard to deal with multivariate
rational functions. Apparently rational functions of the formR = P/Q, whereP andQ are
algebraic polynomials ind variables (d >1), are powerful tool for approximation but very
little is known about them. It seems natural to consider nonlinearn-term approximation
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from the dictionaryR consisting of all functions onRd of the form

R =
n∑

j=1
rj , (1.1)

whererj are partial fractions. In[8], it is considered the case when therj ’s are of the form

r(x) = ∏d
�=1

a�x�+b�

(x�−�)2+�2�
. The main result from [8] relates this type ofn-term rational

approximation with nonlinear piecewise polynomial approximation over arbitrary dyadic
partitions ofRd .
In this article we obtain similar results for the more complicated case ofn-term rational

approximation inR2, when therj ’s are of the form

r(x) =
6∏

�=1

a�x1+ b�x2+ c�

1+ (��x1+ ��x2+ ��)
2 with a�, b�, c�, ��,��, �� ∈ R. (1.2)

Our main result relates the bivariaten-term rational approximation to nonlinear approx-
imation from a broad class of piecewise polynomials over multilevel nested triangulations.
To be more specific, let us consider a sequence of nested triangulations(Tm)m∈Z such that
each levelTm is a partition ofR2 into triangles and a refinement of the previous levelTm−1.
DenoteT :=⋃m∈Z Tm. Natural mild conditions are imposed on the triangulations in order
to prevent them from possible deterioration. These conditions, however, allow the triangles
in T to change in size, shape, and orientation quickly when moving around at a given level
or through the levels. In particular, triangles with arbitrarily sharp angles are allowed in
any location and at any level. Let�k

n(T ) denote the nonlinear set of alln-term piecewise
polynomial functionsSof the form

∑
�∈�n

1� · P�, where eachP� is a polynomial of
degree< k and�n consists ofn triangles fromT . Further, denote by�n(f, T )p the error
of Lp-approximation tof from �k

n(T ). Denote byRn(f )p the error ofLp-approximation
of f from n-term rational functions of form (1.1) withrj of form (1.2).
Our main result says that(Rn(f )p) has the rate of(�n(f, T )p) or a better rate for any

0 < p < ∞, k�1, and multilevel triangulationT . This relationship and the existing
estimates for anisotropic piecewise polynomial approximation (see [6]) give a Jackson
estimate forn-term rational approximation in terms of the minimal smoothness norm over
a wide collection of anisotropic Besov-type smoothness spaces (B-spaces).
Results of the same character are obtained also by Dekel and Leviatan [3] under the

restrictive condition that the piecewise polynomials are over triangulations satisfying the
minimal angle condition (regular triangulations, see Section 2.1) when 1< p <∞.
The main tools in proving our result are the famous result of Newman on the rational

uniform approximation of|x| and an anisotropic version of the Fefferman–Stein vector-
valued maximal inequality.
The outline of the paper is the following. In Section 2 we gather all necessary auxiliary

definition and results. Thus in Section 2.1 we give the definition and some basic properties
of the multilevel triangulations considered. In Section 2.2 we give the needed simple facts
about polynomials. In Section 2.3 we give some known facts about B-spaces and nonlinear
piecewise polynomial approximation. In Section 2.4 we provide everything we need about
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maximal functions. Finally, in Section 3 we state and prove our main results onn-term
rational approximation.
Throughout this article, for a setE ⊂ Rd , 1E denotes the characteristic function ofE, and

|E| denotes the Lebesgue measure ofE, whileE◦ means the interior ofE. For a finite set
E, #E denotes the cardinality ofE. For a vector (point)x ∈ R2, |x| denotes the Euclidean
norm ofx. Positive constants are denoted byc, c1, c

′, . . . and if not specified they may vary
at every occurrence. Further,A ≈ B meansc1�A/B�c2, andA := B or B =: A stands
for “A is by definition equal toB”. Whenever theLp-norm of a function is onR2, we write
briefly ‖ · ‖p, whereas‖ · ‖Lp(E) denotes theLp-norm on a particular setE ⊂ R2. The set
of all algebraic polynomials in two variables of total degree< k is denoted by�k.

2. Preliminary results

2.1. Multilevel nested triangulations

Here we introduce several types ofmultilevel nested triangulationsfollowing the devel-
opment in[6]. Let T = ⋃

m∈Z Tm be a set of closed triangles inR2 with levels(Tm)m∈Z.
We say thatT is ahierarchical nested triangulationor simply triangulationof R2 if the
following conditions are satisfied:

(a) Every levelTm, m ∈ Z, is a set of triangles with disjoint interiors which coverR2, i.e.

R2 =
⋃
�∈Tm

�.

(b) The levels(Tm)m∈Z of T arenested, i.e.Tm+1 is a refinement ofTm obtained by refining
each� ∈ Tm into subtriangles with disjoint interiors.

(c) Each triangle� ∈ Tm has at least two and at mostM0 subtriangles inTm+1, where
M0�4 is a constant independent ofm.

(d) ThevalenceNv of each vertexv ∈ Vm (the number of triangles� ∈ Tm which share
v as a vertex) is less thanN0, whereN0�3 is a constant.

(e) No hanging vertices condition:No vertex of any triangle� ∈ Tm lies in the interior of
an edge of another triangle fromTm.

(f) For any compactK ⊂ R2 and any fixedm ∈ Z, there is a finite collection of triangles
from Tm which coverK, i.e.

K =
⋃

�⊂�n⊂Tm
� where #�n <∞.

We denote byVm andEm the set of all vertices and edges of triangles fromTm, respectively.
We setV :=⋃m∈Z Vm andE :=⋃m∈Z Em.

Note that any two triangles inT either have disjoint interiors or one of them contains the
other. If� and�′ are two different triangles inT and�′ ⊂ �, then we say that� is an
ancestorof �′, while�′ is adescendantof �. Also if �′ ∈ Tm+1 and�′ ⊂ �, � ∈ Tm,
then�′ is called achildof�. Now we define two types of triangulations by imposing more
conditions in addition to conditions (a)–(f) above.
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Locally regular triangulations. A triangulationT =⋃m∈Z Tm is called alocally regular
triangulationof R2 or, briefly, anLR-triangulationif T satisfies the following additional
conditions:

(i) There exists constants 0< r < � < 1 (r� 1
4) such that for each� ∈ T and any child

�′ ∈ T of �,
r|�|� |�′|��|�|. (2.1)

(ii) There exists a constant 0< ��1 such that for any�′,�′′ ∈ Tm (m ∈ Z) with an edge,

�� |�′|
|�′′|��−1. (2.2)

Forv ∈ Vm,m ∈ Z we denote by�v thecellassociated tov, i.e. the union of all triangles
from Tm which havev as a common vertex. We denote by�m the set of all cells generated
by Tm and� :=⋃m∈Z �m.
Strong locally regular triangulations. A triangulationT = ⋃

m∈Z Tm is called astrong
locally regular triangulationof R2 or, briefly, anSLR-triangulationif T satisfies the fol-
lowing two additional conditions:

(i) There exists a constant 0< r < � < 1(r� 1
4) such that for each� ∈ T and any child

�′ ∈ T of �,
r|�|� |�′|��|�|. (2.3)

(ii) Affine transform angle condition:There exists a constant� = �(T ), 0 < ��	/3,
such that if�0 ∈ Tm, m ∈ Z, andA : R2 → R2 is an affine transform that maps�0
one-to-one onto an equilateral reference triangle, then for every� ∈ Tm which has at
least one common vertex with�0 and for every child� ∈ Tm+1 of �0, we have

min angle(A(�))��, (2.4)

whereA(�) is the image of� by the affine transformA.

It can be proved (see[2]) that condition (ii) is equivalent to the following condition:

(ii ′) There exists a constant 0< �1�1/2 such that for any�′,�′′ ∈ Tm (m ∈ Z) sharing
an edge,

|conv(�′ ∪ �′′)|/|�′|��−11 , (2.5)

where conv(G) denotes the convex hull ofG ⊂ R2.

Note that condition (ii′) implies (2.2) with�1 = �. Therefore, each SLR-triangulation is
an LR-triangulation, however, the inverse statement is not true (see [6]).
Regular triangulations. By definition, a triangulationT =⋃m∈Z Tm is called aregular

triangulation if T satisfies the following condition:

(i) There exists a constant� = �(T ) > 0 such that the minimal angle of each triangle
� ∈ T is ��.

Evidently, every regular triangulation is an SLR-triangulation but the converse statement
is not true.
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With the next remarks we clarify several important issues concerning different types of
multilevel triangulations.
(a) For each of the triangulations there are constants which are assumed fixed. We refer

to them asparameters. Thus the parameters of an LR-triangulation areM0,N0, �, �, andr
and the parameters of an SLR-triangulation areM0,N0, �, �, r and�.

(b) The most important observation is that the collection of all SLR-triangulation with
given (fixed) parameters is invariant under affine transforms.More precisely, ifT is anSLR-
triangulation inR2 andA is an affine transform ofR2, thenA(T ) := {A(�) : � ∈ T } is an
SLR-triangulation with the same parameters. The LR-triangulations with fixed parameters
are also invariant under affine transforms.
(c) If T is an LR-triangulation and�′,�′′ ∈ Tm have a common edge, then it may

happen that�′ is an equilateral triangle (or close to an equilateral triangle) but�′′ has an
uncontrollably sharp angle. Such a configuration on an SLR-triangulation is impossible,
however, at any level and location there can be triangles with uncontrollably sharp angles.
For more details, see[6].
(d) In an SLR-triangulationT there can be an equilateral (or close to such) triangle�� at

any levelTm with descendants�1 ⊃ �2 ⊃ · · · such that min angle(�j )→ 0 asj →∞,
and also a sequence(�′j )∞j=0 ⊂ Tm with �′0 = �� and�′j ∩ �′j+1 �= ∅ (j = 0, 1, . . .)
such that min angle(�′j )→ 0 asj →∞.

(e) For an SLR-triangulationT , conditions (2.3)–(2.5) suggest geometric rates of change
of |�|, min angle(�), and max edge(�) as� ∈ Tm moves away from a fixed triangle
�′ ∈ Tm. However, as it will be shown later in this section, the rates of change are powers
of the number of the connecting edges. A similar observation is true for LR-triangulations.
In the following we show how|�|, |max edge(�)|, and min angle(�) may change as

� ∈ T moves away and in depth from a fixed triangle. (See [6, Lemma 2.4] for the proof.)

Proposition 2.1. LetT be an LR-triangulation ofR2. Suppose that�′,�′′ ∈ Tm,m ∈ Z,
and�′ and�′′ can be connected by< 2
 intermediate edges fromEm with (pairwise)
common vertices.Then there exist�1,�2 ∈ Tm−2N0
 with a common vertex such that
�′ ⊂ �1 and�′′ ⊂ �2.

Lemma 2.2. LetT be anSLR-triangulation ofR2with parameter� = �(T ), 0< ��	/3.

(a) If �′,�′′ ∈ Tm,m ∈ Z, and�′ ∩ �′′ �= ∅, then
�−11 � |max edge(�′)|/|max edge(�′′)|��1, (2.6)

where�1 depends only on� andN0.
(b) If � ∈ Tm,�′ ∈ Tm+1, and�′ ⊂ �, then

1� |max edge(�)|/|max edge(�′)|��2, (2.7)

where�2 depends only on the parameters ofT .

Proof. (a) It suffices to prove that if�′,�′′ ∈ Tm have a common edge, then

�−10 � |max edge(�′)|/|max edge(�′′)|��0, �0 > 1. (2.8)
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Then, since every vertex can have valence at mostN0, (2.6) follows with�1 = ��N0/2�
0 by

applying the above estimate�N0/2� times.
Suppose that�′,�′′ ∈ Tm have a common edge. Let�1 be an equilateral reference

triangle of side length one and letA be an affine transform which maps�′ one-to-one onto
�1. Write �2 := A(�′′). Let S−1 be the circle inscribed in�1 and letS+1 be the circle
circumscribed around�1. Similarly, we letS−2 andS+2 be the circles inscribed in�2 and
circumscribed around�2, respectively. Denote byr−j , r

+
j (j = 1,2) the radii of the circles

S−j , S
+
j (j = 1,2), respectively. Simple geometric argument shows that

r+1 =
1√
3

and r−2 �2 sin
�
2
, (2.9)

where� is from condition (2.4) on the SLR-triangulations.
WriteE−j := A−1(S−j ), E

+
j := A−1(S+j ), j = 1,2. SinceA is an affine transform, then

A−1 is also an affine transform and, therefore,E−j , E
+
j (j = 1,2) are ellipses. Denote by

d−j , d
+
j , j = 1,2, (the lengths of) the major diameters of the above ellipses. SinceA−1 is

an affine transform andE±j (j = 1,2) are images of circles, then

d±1
d±2

= r±1
r±2

Using this and (2.9), we obtain

d+1
d−2

= r+1
r−2

� 1

2
√
3 sin �

2

=: �0.

We have�′ ⊂ E+1 andE−2 ⊂ �′′, and hence

|max edge(�′)|�d+1 ��0d
−
2 ��0|max edge(�′′)|,

which yields (2.8), using also the symmetry.
(b) The right-hand-side estimate in (2.7) follows immediately by (2.1) and the fact that

any triangle� ∈ T can have at mostM0 children. The left-hand-side estimate in (2.7) is
obvious. �

Theorem 2.3. (a)LetT be an LR-triangulation ofR2 with parameters0< r < � < 1and
N0.Suppose that�′,�′′ ∈ Tm,m ∈ Z, and�′ and�′′ can be connected by n intermediate
triangles(or edges)with common vertices fromTm. Then

c−11 n−s � |�′|
|�′′| �c1n

s (2.10)

with s := 2N0 log2(�/r) andc1 := �−N0(�/r)2N0.
(b)LetT beanSLR-triangulation ofR2with parameter� = �(T ), 0< ��	/3.Suppose

that�′,�′′ ∈ Tm,m ∈ Z, and�′ and�′′ can be connected by n intermediate triangles
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with common vertices fromTm. Then

c−12 n−u� |max edge(�′)|
|max edge(�′′)|�c2n

u (2.11)

with u := 2N0 log2(�2) andc2 := �1�
2N0
2 where�1, �2 are from Lemma2.2.

Proof. (a) See [6, Theorem 2.5].
(b) Choose
�1 so that 2
−1�n < 2
. ByProposition 2.1, there exist�1,�2 ∈ Tm−2N0


with a common vertex such that�′ ⊂ �1 and�′′ ⊂ �2. Using (2.6), we have

|max edge(�1)|��1|max edge(�2)|.
On the other hand, applying (2.7) repeatedly, we infer

|max edge(�2)|��2N0

2 |max edge(�′′)|.

Combining these estimates, we obtain

|max edge(�′)|� |max edge(�1)|��1�
2N0

2 |max edge(�′′)|

which implies (2.11) since 2
−1�n. �

Theorem 2.4. (a) Let T be an SLR-triangulation ofR2 with parameters� = �(T ), 0 <

��	/3. There exists a constant0 < ϑ < 1 depending only on� such that if� ∈ Tm
(m ∈ Z),�′ ∈ Tm+$, $�1,and�′ ⊂ �, then

ϑ$� min angle(�′)
min angle(�) �ϑ−$. (2.12)

(b)LetT beanLR-triangulation ofR2.There exist constants0< r1 < �1 < 1depending
only on the parameters ofT (see the definition of LR-triangulations)such that if� ∈ Tm
(m ∈ Z),�′ ∈ Tm+3N0$, $�1,and�′ ⊂ �, then

r$1� |max edge(�′)|
|max edge(�)| ��$1. (2.13)

Proof. (a) See[6] (see Lemma 2.3).
(b) For the proof of the upper bound in (2.13) the argument is quite similar to the argument

of the proof of Lemma 2.7 in [2] and will be omitted.
The argument for the proof of the lower bound in (2.13) is simpler. Suppose� ∈ Tm,

�′ ∈ Tm+1, and�′ ⊂ �. Let emax ande′max be the largest edges of� and�′, respectively.
Denote byh the length of the height toemax in � and byh′ the length of the height toe′max
in �′. Further, letR andR′ be the radii of the circles inscribed in� and�′, respectively.
A simple geometric argument shows thatR < h < 3R as well asR′ < h′ < 3R′. Since
�′ ⊂ �, thenR′�R and henceh′ < 3h. We use this and (2.1) to obtain

(1/2)r|emax|h = r|�|� |�′|�(1/2)|e′max|h′�(3/2)|e′max|h
which implies|e′max|�(r/3)|emax| wherer is the original parameter ofT . This obviously
implies the lower bound in (2.13).�
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Stars. In order to deal with graph distances and neighborhood relations it is convenient
to employ the notion ofmth-level star of a set.

Definition 2.5. For any setE ⊂ R2 andm ∈ Z, we define star1m(E) by

star1m(E) := ∪{� ∈ �m : �◦ ∩ E �= ∅} (2.14)

and inductively
starkm(E) := star1m(star

k−1
m (E)), k > 1. (2.15)

WhenE consists of a single pointx, in slight abuse of notation, we shall write stark
m(x)

instead of starkm({x}).

2.2. Local polynomial approximation

We shall frequently use the equivalence of norms of polynomials over various sets inR2,
which we give in the following proposition. See[6] for the proof.

Proposition 2.6. LetP ∈ �k, k�1,and0< p, q�∞.

(a) For any triangle�,
‖P ‖Lp(�) ≈ |�|1/p−1/q‖P ‖Lq(�). (2.16)

wherec = c(p, q, k).
(b) If � and�′ are two triangles such that�′ ⊂ � and|�|�c0|�′|, then

‖P ‖Lp(�)�c‖P ‖Lp(�′), (2.17)

wherec = c(p, k, c0).
(c) If � and�′ are two triangles such that�′ ⊂ � and|�|�c1|�′|, then

‖P ‖Lp(�)�c‖P ‖Lp(�\�′) ≈ c|�|1/p−1/q‖P ‖Lq(�\�′), (2.18)

wherec = c(p, k, c1).

In the following,�� will denote an equilateral (reference) triangle of side one, centered
at the origin. We shall need an estimate on the growth of a polynomialP(x) asx moves
away from the origin.

Lemma 2.7. LetP ∈ �k and0< p�∞. Then

|P(x)|�c‖P ‖Lp(��)(1+ |x|)k−1 for x ∈ R2, (2.19)

wherec = c(p, k).

Proof. Let P(x) =∑|�|<k a�x
�. Then forx ∈ R2,

|P(x)|�
∑
|�|<k

|a�||x|��k2max
�
{|a�|}(1+ |x|)k−1�c‖P ‖Lp(��)(1+ |x|)k−1

since all norms in a finite-dimensional space are equivalent.�
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For f ∈ Lp(E), E ⊂ R2, 0 < p�∞, andk�1, we denote byEk(f,E)p the error of
Lp-approximation tof from�k, i.e.

Ek(f,E)p := inf
P∈�k

‖f − P ‖Lp(E). (2.20)

We also denote bywk(f,E)p thekth modulus of smoothness off ∈ Lp(E), defined by

wk(f,E)p := sup
h∈R2

‖�k
h(f, ·)‖Lp(E), (2.21)

where

�k
h(f, x) :=

{∑k
j=0(−1)j+k

(
k
j

)
f (x + jh) if [x, x + kh] ⊂ E,

0 otherwise

and[x, x + kh] denotes the line segment betweenx andx + kh.

Proposition 2.8(Whitney).Let f ∈ Lp(�) for some triangle�, 0 < p�∞, andk�1.
Then

Ek(f,�)p�cwk(f,�)p, (2.22)

wherec = c(p, k).

We refer the reader to[6] for the proof of Proposition 2.8.

2.3. Nonlinear piecewise polynomial approximation and B-spaces

In this sectionweprovide thebasic resultsof the theoryof nonlinearn-termapproximation
frompiecewise polynomials generated bymultilevel nested triangulations, developed in [6].
This theory provides important ingredients for our theory ofn-term rational approximation.
B-spaces. We begin with the definition of a collection of spaces (B-spaces) needed for

the theory of nonlinear piecewise polynomial approximation inLp(R
2) (0 < p < ∞). In

[6] they are termed “skinny” B-spaces.
Taking into consideration our further needs, we shall be assuming in the following thatT

is an LR-triangulation or an SLR-triangulation (see Section 2.1). Throughout this section
we assume that 0< p <∞, � > 0, k�1, and� is determined from 1/� := �+ 1/p.

Definition 2.9. The B-spacesB�k
� (T ) is defined as the set of all functionsf ∈ Lp(R

2)

such that

‖f ‖B�k
� (T ) :=


∑
�∈T

(|�|−�wk(f,�)�)�



1/�

<∞, (2.23)

wherewk(f,�) is akth modulus of smoothness off on� (see (2.21)).

Whitney’s estimate (Proposition 2.8) implies

‖f ‖B�k
�
(T ) ≈


∑
�∈T

(|�|−�Ek(f,�)�)�



1/�

. (2.24)
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Nonlinear piecewise polynomial approximation. Let�k
n(T ), k�1, denote the nonlinear

set of alln-term piecewise polynomial function of the form

S =
∑

�∈�n

1� · P�,

whereP� ∈ �k, �n ⊂ T , #�n�n, and�n may vary withS. We denote by�n(f, T )p the
error ofLp-approximation tof ∈ Lp(R

2) from�k
n(T ):

�n(f, T )p := inf
S∈�k

n(T )

‖f − S‖p. (2.25)

In [6] for the characterization of the approximation spaces generated by(�n(f, T )p) the
machinery of Jackson–Bernstein estimates and interpolation are used.

Proposition 2.10(Jackson estimate).If f ∈ B�k
� (T ), then

�n(f, T )p�cn−�‖f ‖B�k
� (T )

with c depending only on p,�, k,and the parameters ofT .

Proposition 2.11(Bernstein estimate).If S ∈ �k
n(T ), then

‖S‖B�k
� (T )�cn�‖S‖p (2.26)

with c depending only on p,�, k,and the parameters ofT .

Denote byA�
q := A

�
q(Lp, T ) the approximation space generated by(�n(f, T )p), con-

sisting of all functionsf ∈ Lp such that

‖f ‖A�
q
:= ‖f ‖p +

( ∞∑
n=1

(n��n(f ))q
1

n

)1/q

<∞ (2.27)

with the$q -norm replaced by the sup-norm ifq = ∞.
The following characterization of the approximation spacesA

�
q follows in a standard way

by Propositions2.10–2.11.

Proposition 2.12. If 0< � < � and0< q�∞, then

A
�
q(Lp, T ) = (Lp,B�k

� (T )) �
� ,q

with equivalent norms.Here (X, Y ),q denotes the real interpolation space between the
spaces X andY(see e.g.[1]).

Denote

�n(f )p := inf
T

�n(f, T )p,

where the infimum is taken over all LR-triangulationsT with fixed parameters. The fol-
lowing result is immediate from Proposition2.10.
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Proposition 2.13. SupposeinfT ‖f ‖B�k
� (T ) < ∞, where the infimum is taken over all

LR-triangulations with fixed parameters,and letf ∈ Lp(R
2). Then

�n(f )p�cn−� inf
T
‖f ‖B�k

� (T ).

For more details, see[6].

2.4. Maximal functions

In this section we introduce and explore two types of maximal functions. They will be
our main vehicle in proving out results for nonlinearn-term rational approximation.

Definition 2.14. Let T be a multilevel triangulation inR2 (for the definition, see Section
2.1). For a Lebesguemeasurable functionf, definedonR2, ands > 0,wedefine themaximal
functionMs

T f by

(Ms
T f )(x) := sup

�∈�: x∈�

(
1

|�|
∫

�
|f (y)|sdy

)1/s

(2.28)

where the sup is taken over all cells� ∈ � containingx.

We next associate with any triangle� ⊂ R2 a collection of ellipsesE�, which will be
used in the definition of another type of maximal function. Let�� be a fixed equilateral
reference triangle of side length one. Denote byB− the circle inscribed in�� and byB+
the circle circumscribed around��.
For a given triangle�, letA be an affine transform which maps�� one-to-one onto�.

DenoteE− = A(B−) andE+ = A(B+), which are apparently ellipses. It is also readily
seen thatE− can be obtained by dilating and shiftingE+. Now, we let E� denote the set of
all ellipses inR2 which can be obtained by dilating and shiftingE− orE+.

Definition 2.15. Suppose� is a fixed triangle inR2 ands > 0. For any Lebesgue measur-
able functionf, we define the maximal functionMs

E�f by

(Ms
E�f )(x) := sup

E∈E�: x∈E

(
1

|E|
∫
E

|f (y)|sdy
)1/s

(2.29)

where the sup is taken over all ellipsesE ∈ E� containingx.

We first note that if� is an equilateral triangle ands = 1, thenMs
E�f is the standard

maximal function.
If s = 1, we denoteMT f := M1

T f andME�f := M1
E�f . Note thatMs

T f =
(MT |f |s)1/s.

Remark 2.16. One of the most important properties of the maximal functionsMs
T f and

Ms
E�f is that they are invariant under affine transforms. Thus ifA is an arbitrary affine
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transform onR2, then

(Ms
T f )(x) = (Ms

A(T )f (A
−1))(A(x)), x ∈ R2,

whereA(T ) := {A(�) : � ∈ T }. The maximal functionsMs
E�f are invariant in a similar

sense.
Recall that ifT is an SLR-triangulation (LR-triangulation), thenA(T ) is also an SLR-

triangulation (LR-triangulation) with the same parameters. Consequently, the set of all
maximal functions{Ms

T }, where theT ’s are SLR-triangulations with the same fixed pa-
rameters is invariant under affine transforms.

The next theorem provides a very important relation between the above defined maximal
functions.

Theorem 2.17.Let T be an SLR-triangulation and lets > 0. Then there existss′ > 0,
depending only on s and the parameters ofT such that if� ∈ T , then

(Ms′
E�1�)(x)�c(Ms

T 1�)(x), x ∈ R2, (2.30)

where c depends only on s and the parameters ofT .Heres′ (s′ < s) can be defined e.g. by
s′ := s ln(1/�1)/[ln(1/�1)+ 3N0 ln(1/ϑ)], whereϑ and�1 are from Theorem2.4.

Proof. An important ingredient in the proof of this theorem will be the fact that (2.30) is
invariant under affine transforms (see Remark 2.16).
Suppose� ∈ Tm (m ∈ Z) and letx ∈ R2. Two cases are to be considered here.
Case1: x ∈ star1m(�). Evidently,(Ms′

E�1�)(x)�‖1�‖L∞ = 1. On the other hand, by

the definition of star1m(�) in (2.14) there exists a cell� ∈ Tm such thatx ∈ � and� ⊂ �.
Here� is one of the triangles inTm which make up�. Then using Definition 2.14 we obtain

(Ms
T 1�)(x)�

(
1

|�|
∫

�
|1�(y)|s dy

)1/s

�(|�|/|�|)1/s�c > 0,

where we used that|�|�c|�| which follows by conditions (i)–(ii) on SLR-triangulations
(see also (2.1)–(2.2)). The above estimates imply (2.30).
Case2: x ∈ R2 \ star1m(�). Let l (l�m) be the minimum level such thatx ∈ R2 \

star1l (�). The existence of such levell�m follows by property (f) of SLR-triangulations
and Proposition 2.1. Thenx ∈ star1l−1(�).

Denote by�0 the unique triangle inTl such that� ⊂ �0. Since (2.30) is invariant under
affine transforms, we may assume that�0 is an equilateral triangle of side length one. Let
emax be the maximal edge of� and writea := |emax|. Also, leth be (the length of) the
height in� to emax.
Sincex ∈ star1l−1(�), then there exists� ∈ �l−1 such thatx ∈ � and� ⊂ �. By

conditions (i)–(ii) on SLR-triangulations and since�0 is an equilateral triangle of side
length one, it follows that|�| ≈ 1. Consequently,

(Ms
T 1�)(x)�

(
1

|�|
∫

�
|1�(y)|s dy

)1/s

�
( |�|
|�|
)1/s

�c|�|1/s�c′(ah)1/s.

(2.31)
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To estimate(Ms′
E�1�)(x) from above, we first show thatd := dist(�, x)�c1 for some

constantc1 > 0, where dist(�, x) is the Euclidean distance fromx to � in R2. Since
� ⊂ �0 and�0 ∈ Tl , then star1l (�) = star1l (�0). Therefore, it suffices to show that
dist(�0, y)�c1 for all y from the boundary ofR2 \ star1l (�0). But the boundary ofR2 \
star1l (�0) is obviously the same as the boundary�(star1l (�0)) of star1l (�0). A simple
geometric argument shows that the Euclidean distance between�0 and�(star1l (�0)) is
bounded below by theminimumheight to an edge in a triangle fromTl which has a common
vertex with�0. But by condition (ii) on SLR-triangulations, min angle(�′)�� > 0 and
hence|min edge(�′)|�c(�) > 0 for all triangles�′ ∈ Tl which have a common vertex
with �0. Here we use that�0 ∈ Tl is an equilateral triangle of side length one. These
inequalities yield that the minimum height to an edge in a triangle fromTl which has a
common vertex with�0 is bounded below by a constantc1 > 0 depending only on�,
which in turn implies dist(�, x)�dist(�0, �(star1l (�0)))�c1.

LetA be an affine transform which maps an equilateral reference triangle�� one-to-one
onto�. LetE± be the images of the inscribed (−) and subscribed (+) circles of�� (see
the construction above Definition2.15). Evidently the major diameters ofE± are≈ a and
the minor diameters ofE± are≈ h. LetE∗ be the smallest ellipse inE� such thatx ∈ E∗
and� ∩ E∗ �= ∅. Denote byD andH the major and minor diameters ofE∗. Evidently,
D�d�c1, whered := dist(�, x). SinceE∗ can be obtained fromE+ (orE−) by a dilation
and a shift, thenH/D ≈ h/a and hence|E∗|�cDH �cD2h/a�cd2h/a�c′′h/a.

By the definition ofE∗, for any ellipseE ∈ E� such thatx ∈ E and�∩E �= ∅ we have
|E|� |E∗|. Then by Definition 2.15, it follows that

(Ms′
E�1�)(x) = sup

E∈E�: x∈E,�∩E �=∅

(
1

|E|
∫

E

1�(x) dx
)1/s′

�
( |�|
|E∗|

)1/s′

�c

(
a|�|
h

)1/s′

�c2a
2/s′ . (2.32)

Taking into account (2.31)–(2.32), it remains to show thata2/s
′�c(ah)1/s or equivalently

a2/s
′−2/s �c(h/a)1/s. (2.33)

Denote
 := m− l. Using Theorem 2.4(b), it follows that

a = |max edge(�)|��[
/3N0]
1 |max edge(�0)| = �[
/3N0]

1 . (2.34)

Let � := min angle(�). By Theorem 2.4 (a),��ϑ
min angle(�0)�cϑ
, which yields

h/a�(1/2) sin��(1/	)��cϑ
. (2.35)

We are now prepared to show that (2.33) holds true. If 0�
 < 6N0, then by (2.34)–(2.35)
we havea�1 andh/a�c. Hence (2.33) holds with some constantc > 0 depending only on
sand the parameters ofT . Suppose
�6N0. Then[
/3N0]�
/6N0 and using (2.34)–(2.35)
we obtain

a2/s
′−2/s ��[
/3N0](2/s′−2/s)

1 ��(
/3N0)(1/s′−1/s)
1 = ϑ
/s �c(h/a)1/s,

where the constantc > 0 is again depending only ons and the parameters ofT . Thus in
both cases (2.33) holds true and this completes the proof.�
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Themaximal inequality. Herewe extend the usualLp maximal inequalities (boundedness
of maximal operators) to maximal functions generated by multilevel nested triangulations.
In essence these are well-known results. We present in the form that we need.
Suppose thatd : Rn × Rn → [0,∞) is aquasi-distance inRn, i.e.d satisfies

(a) d(x, y) = 0⇐⇒ x = y,

(b) d(x, y)= d(y, x),

(c) d(x, z)�c(d(x, y)+ d(y, z)) with c�1. (2.36)

We denote byB(y, a) (a > 0) the “ball” with respect to this quasi-distance of radiusa
centered aty, that is,B(y, a) := {x : d(x, y) < a}.

In this setting the maximal function (operator)Ms is defined by

(Msf )(x) := sup
B: x∈B

(
1

|B|
∫

B

|f (y)|s dy
)1/s

, (2.37)

where the infimum is over all ballsB containingx.
The Fefferman–Stein vector-valued maximal inequality (see[5,10]) reads as follows:

Proposition 2.18. If 0 < p < ∞, 0 < q�∞, and 0 < s < min{p, q}, then for any
sequence of functions(fj )∞j=1 onR2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

 ∞∑
j=1

|Msfj |q



1/q
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

�c

∥∥∥∥∥∥

 ∞∑
j=1

|fj |q)1/q
∣∣∣∣∣∣
∣∣∣∣∣∣
p

, (2.38)

where c depends only on p,q,and s.

As a matter of fact, in[5,10] the maximal inequality (2.38) is stated and proved in the
cases = 1 but sinceMsf = (M1|f |s)1/s the proposition follows.

Definition 2.19. For a given LR-triangulationT , we define a quasi-distancedT : R2 ×
R2→ [0,∞) by

dT (x, y) := inf {|�| : � ∈ � andx, y ∈ �}. (2.39)

Lemma 2.20. The mappingdT : R2×R2→ [0,∞) defined in(2.39)is a quasi-distance
in R2.

Proof. Condition (a) on quasi-distances (see (2.36)) follows by the properties of the LR-
triangulations (see Section 2.1). Condition (b) is obvious.
To prove that condition (c) holds letx, y, z be three distinct points inR2. Assume that

d(x, z) = |�′|, where�′ ∈ �m is a cell containingx, z. Similarly let d(y, z) = |�′′| for
some cell�′′ ∈ �n which contains bothy andz. Without loss of generality we assume
thatm�n. Obviouslyx andz lie in triangles inTm with a common vertex (or in the same
triangle). Sincem�n, the same is true fory andz. In other words there exist triangles
�1,�2 ∈ Tm which can be connected with< 2 intermediate triangles fromTm (with
common vertices), so thatx ∈ �1, y ∈ �2. By Proposition 2.1 that there exists� ∈
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�m−2N0 such that�1,�2 ⊂ � and henced(x, y)� |�|. By properties (2.1)–(2.2) of the
LR-triangulations thereexists a constantc := c(�, r, N0)such that|�|�c|�′|.Consequently,
d(x, y)�c(d(x, z)+ d(z, y)). �

Denote byMs
dT the maximal function generated by the quasi-distance defined in (2.39).

Lemma 2.21. If T is an LR-triangulation,then for any measurable function f

Ms
T f (x) ≈Ms

dT f (x), x ∈ R2, (2.40)

where the constants of equivalence depend only on s and the parameters ofT .

Proof. Fix a ballB = B(x, �), x ∈ R2, � > 0. Let m be the minimum level such that for
some�′ ∈ �m, we have x∈ �′ ⊂ B. Since every� ∈ �l with l > m is contained in a cell
from�m,

B(x, �) =
⋃

|�|<�, x∈�
� ⊂

⋃
�∈�m, x∈�

� ⊂ star2m(x).

But any two triangles fromTm which are contained in star2
m(x) can be connected by< 22

intermediate edges fromEm. Then by Proposition2.1 it follows that star2m(x) ⊂ �′′ for some
�′′ ∈ �m−4N0. Thus�

′ ⊂ B ⊂ �′′ with �′ ∈ �m and�′′ ∈ �m−4N0. By properties (i), (ii)
(see (2.1), (2.2)), we conclude that|�′′|�c|�′| with c depending onr, �, andN0.
In the other direction, for any cell� ∈ �n (n ∈ Z) with “central” vertexv, we have

� ⊂ star2n(v). Let �
′ = max{|�| : � ⊂ star2n(v)}. Then

� ⊂ B(v, �′) =
⋃

|��|<�′, v∈��
�� ⊂ star2n(v),

which yields|B(v, �′)|�c|�|. This completes the proof.�

We now couple Proposition2.18 with the above lemma to obtain the following modifi-
cation of the Fefferman–Stein maximal inequality:

Proposition 2.22. Let T be an LR-triangulation ofR2. If 0 < p < ∞, 0 < q�∞, and
0< s < min{p, q}, then for any sequence of functions(fj )∞j=1 onR2∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

 ∞∑
j=1

|Ms
T fj |q




1/q
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

�c

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

 ∞∑
j=1

|fj |q



1/q
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

, (2.41)

where c depends only on p,q, s,and the parameters ofT .

3. Main results

We denote byRn the set of alln-term rational functions onR2 of the form

R =
n∑

i=1
ri,
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where eachri is of the form

ri =
6∏

�=1

a�x1+ b�x2+ c�

1+ (��x1+ ��x2+ ��)
2

with a�, b�, c�, ��,��, �� ∈ R.
Denote byRn(f )p the error ofLp-approximation tof fromRn:

Rn(f )p := inf
R∈Rn

‖f − R‖p.

Clearly, eachR ∈ Rn depends on�36n parameters andRn is a nonlinear set, however,
cRn = Rn (c �= 0) andRn + Rm = Rn+m. A fundamental property ofRn is that it is
invariant under affine transforms, i.e. ifR ∈ Rn, thenR◦A ∈ Rn for every affine transform
A.
Our primary goal in this chapter is to relaten-term rational approximation andn-

term piecewise polynomial approximation. We shall use all the notation from Section 2.3.
Throughout this section, we assume thatT is an SLR-triangulation onR2 (see Section2.1).
The following theorem contains our main result.

Theorem 3.1. Letf ∈ Lp(R
2), 0< p <∞, � > 0,andk�1.Then

Rn(f )p�cn−�

(
n∑

m=1

1

m
(m��m(f, T )p)

p∗ + ‖f ‖p∗p
)1/p∗

, n = 1,2, . . . , (3.1)

wherep∗ = min{1, p} and c depends only on�, p, k,and the parameters ofT .

It is an important observation that in Theorem3.1 there is no restriction on� > 0. The
next corollary follows immediately from the above theorem.

Corollary 3.2. If �n(f, T )p = O(n−�) for anarbitrarySLR-triangulationT , 0< p <∞,
and� > 0, thenRn(f )p = O(n−�).

Combining the Jackson estimate forn-term piecewise polynomial approximation from
Proposition2.10 with Theorem 3.1, we infer the following result.

Corollary 3.3. If f ∈⋂T B�k
� (T ), where� > 0, 1/� := �+ 1/p, 0< p <∞, then

Rn(f )p�cn−� inf
T
‖f ‖B�k

� (T ), (3.2)

where the infimum is taken over all SLR-triangulation with some fixed parameters.

We shall deduce Theorem3.1 from the following result.
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Theorem 3.4. For eachS ∈ �k
m(T ),m�1,andn�1, there existsR ∈ Rn such that

‖S − R‖p�c exp(−(n/m)1/12)‖S‖p (3.3)

where c depends only on p,k,and the parameters ofT .

The main vehicles in the proof of Theorem3.4 will be the anisotropic version of the
Fefferman–Stein vector-valuedmaximal inequalitywhichwasgiven inProposition 2.22 and
the following lemmawhich rests on the result of Newman [7] on the rational approximation
of |x|.

Proposition 3.5. For each� > 0, 0 < � < 1, and � a positive integer,there exists a
univariate rational function� such that

deg��c ln(e + 1/�) ln(e + 1/�)+ 4�, (3.4)

0�1− �(t) < � for |t |�1− �, (3.5)

0��(t) < �
(

1

1+ |t |
)4�

for |t |�1 and (3.6)

0��(t)�1 for t ∈ R, (3.7)

where c is an absolute constant.Moreover,� has only simple poles.It follows by(3.6) that
if � = P/Q (P,Q polynomials)thendegQ� degP + 4�.

For later use, we include the following lemma.

Lemma 3.6. Suppose� = P/Q is a univariate rational function degree� l such that
degQ� degP + k + 1 (k�1) and� has only simple poles.Let P̃ ∈ �k(R

2). Suppose
that� := [v1, v2, v3] is a triangle inR2 and aix1 + bix2 + ci = 0 (i = 1,2, 3) is an
equation of the straight line containing the edge of� opposite to the vertexvi . Denote
Ti(x) = aix1+ bix2+ ci . Then

3∏
i=1

�(Ti)P̃ ∈ Rcl3. (3.8)

Proof. Eachx ∈ R2 has a representation of the form

x = b1(x)v1+ b2(x)v2+ b3(x)v3, b1(x)+ b2(x)+ b3(x) = 1,

whereb1(x), b2(x), andb3(x) are thebarycentric coordinates[4] of xwith respect to�. It
is readily seen thatbi(x) = AiTi(x). Then the Bernstein–Bezier representation ofP̃ (x) is
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of the form

P̃ (x)=
∑

0��+�+�<k

c�,�,�b1(x)
�b2(x)

�b3(x)
�

=
∑

0��+�+�<k

d�,�,�T1(x)
�T2(x)

�T3(x)
�.

Therefore,
3∏

i=1
�(Ti(x))P̃ (x)

=
∑

0��+�+�<k

d�,�,�[T1(x)��(T1(x))][T2(x)��(T2(x))][T3(x)��(T3(x))].

Since degQ� degP + k + 1 and� has only simple poles thenT1(x)��(T1(x)) has a
representation of the form

T1(x)
��(T1(x)) =

�1∑

=1

u1,
T1(x)+ v1,


t1,
 + (T1(x)+ s1,
)2
with �1� l/2.

Evidently,T2(x)��(T2(x)) andT3(x)��(T3(x)) have similar representations. Consequently,
3∏

i=1
�(Ti(x))P̃ (x)=

∑
0��+�+�<k

d�,�,�

3∏
j=1

�j∑

=1

uj,
Tj (x)+ vj,


tj,
 + (Tj (x)+ sj,
)2

=
cl3∑
�=1

3∏
i=1

ai,�x1+ bi,�x2+ ci,�

1+ (�i,�x1+ �i,�x2+ �i,�)2
,

whereai,�, bi,�, ci,�, �i,�,�i,�, �i,� ∈ R. The proof is complete. �

With the next lemma we show that every piecewise polynomial functionS ∈ �k
n(T ) can

be represented as a piecewise polynomial function on�cn non-overlapping “rings”.

Lemma 3.7. SupposeS := ∑
�∈� 1�P�, whereP� ∈ �k, � ⊂ T , and#��n. Then S

can be represented in the form

S :=
∑
�∈�̃

1K�PK� , (3.9)

where�̃ ⊂ T , #�̃�cn with c depending only on the parameters ofT , each“ring” K� is
of the formK� = � or K� = � \ �′,�′ ∈ T , andK◦�1

∩K◦�2
= ∅ if �1 �= �2.

Proof. Since the levels ofT are nested, there is a natural tree structure inT induced by the
inclusion relation. Namely, if�1,�2 ∈ T then�1 ⊂ �2 or�2 ⊂ �1 or�◦1 ∩ �◦2 = ∅.
The set� generates a subtree inT . LetT� be the set of all triangles� ∈ T for which there
exist two triangles�1,�2 ∈ � such that�1 ⊂ � ⊂ �2. Clearly,� ⊂ T�.
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We shall make the distinction between several types of triangles inT�. We say that
� ∈ T� is a leaf in T� if � does not contain any other triangle inT�. We denote by�$ the
set of all leaves in�. Evidently,�$ ⊂ �.
We say that� ∈ T� is abranching trianglefor T� if � has at least two children inT�,

i.e., if at least two children of� in T lie in � or have descendants in�. We denote by�b

the set of all branching triangles inT . We also denote by�′b the set of all children inT of
branching triangles. We extend� to �̃ := � ∪ �b ∪ �′b. It is easy to see that in every tree
the number of the branching elements does not exceed the number of the leaves. Therefore,
#�b�#�$�n and #�′b�cn since the number of children of a triangle is bounded byM0.
Thus #�̃�cn.
We denote bỹ�$ the set of all leaves in the treeT� ∪ �b′ .
For each triangle� ∈ �̃ \ (�b ∪ �̃$) we denote bỹ� the unique largest trianglẽ� ⊂ �

such that�̃ ∈ �̃ and�̃ �= �. Finally, we introducerings generated by� as follows. For
� ∈ �̃, we define

K� :=


∅ if � ∈ �b,

� \ �̃ if � ∈ �̃ \ (�b ∪ �̃$),

� if � ∈ �̃$.

It is readily seen thatK◦�1
∩K◦�2

= ∅ if �1,�2 ∈ �̃ and�1 �= �2. Also, since all children

of branching triangles belong tõ�, we have

� =
⋃

�′∈�̃,�′⊂�
K�′ , � ∈ �̃ (3.10)

and, hence, ⋃
�∈�̃

� =
⋃
�′∈�̃

K�′ . (3.11)

Evidently,S is a polynomial of degree< k on each ringK� and therefore (3.9) holds.�

The next lemma provides the main step in the proof of Theorem 3.4.

Lemma 3.8. Suppose� := 1K · PK , whereK = � \ �′, �′ ⊂ �, �,�′ ∈ T , and
PK ∈ �k, k�1. Then for > 0 and s > 0 there exists a rational functionR ∈ Rl with
l�c ln12(e + 1/) such that

‖�− R‖p�c‖�‖p (3.12)

and
|R(x)|�c|K|− 1

p ‖�‖p(Ms
T 1K)(x) for x ∈ R2 \K, (3.13)

where c depends on p,k, s,and the parameters ofT .

Proof. Let �� be an equilateral reference triangle with side length one, centered at the
origin. Denote byv1, v2, and v3 the vertices of��. Let l−3 be the straight line inR2

throughv1 andv2. Also, let l
+
3 be the line throughv3 which is parallel tol−3 and letS3

denote the strip bounded byl−3 andl+3 . We similarly define the linesl−j , l
+
j (j = 1,2) and
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the stripsS1, S2. Further, we denote byTj (j = 1,2, 3), the linear function of the form

Tj (x) = a
j
1x1+ a

j
2x2+ a

j
3, so thatTj (l

−
j ) = −1 andTj (l

+
j ) = 1.

For the givens > 0, we selects′ so that 1/s′ := 1/s + 3N0 ln(1/ϑ)/[2s ln(1/�1)],
whereϑ and�1 are the constants from Theorem2.4 (see Theorem 2.17).
Let�be theunivariate rational function fromProposition3.5appliedwith� := , � := p

and� := �(k + 2/s′)/4� + 1. We define���(x) :=∏3
i=1 �(Ti(x)). By (3.4), we have

deg��c ln

(
e + 1



)
ln

(
e + 1

p

)
+ 4��c ln2

(
e + 1



)
, c := c(k, s, p).

(3.14)

By (3.7), it follows that
0����(x) < 1 for x ∈ R2. (3.15)

Denote��� := (1−�)��, i.e.��� := {x ∈ R2 : x = (1−�)y, y ∈ ��}. Then (3.5) implies

0�1− ���(x)�
3∑

i=1
(1− �(Ti(x)))�3, x ∈ ���. (3.16)

Let x ∈ R2 \ ��. If |x |�2, then by (3.6) we have���(x) < c. Let |x| > 2. By the
symmetry we may assume thatTi(x) > 1 for i = 1,2, or 3. Then since|x|�c dist(x, Si),
we have

���(x)��(Ti(x))�c
(

1

1+ dist(x, Si)

)4�

�c
(

1

1+ |x|
)4�

.

These estimates imply that

���(x)�c
(

1

1+ |x|
)4�

, x ∈ R2 \ ��. (3.17)

Clearly the statement of the lemma is invariant under affine transforms (seeRemark2.16).
So, without loss of generality we shall assume that� is an equilateral triangle of side length
one, namely,� = ��. Suppose�′ ⊂ � is any triangle. Let�� := ��� := (1− �)��. Set
�� := ��� .
Let A be an affine transform mapping one-to-one�′ onto���. ThenA−1(���) = �′.

Denote�′� := A−1(��). Then�′ ⊂ �′� and it is readily seen that|�′� \ �′|��.
Now, we define��′ := ��� ◦A, the composition of��� andA. By the properties of���

andA it follows that

0���′(x) < 1 for x ∈ R2, 0�1− ��′(x)�3 for x ∈ �′ (3.18)

and
��′(x)�c for x ∈ R2 \ �′�. (3.19)

Let� := 1K · PK, PK ∈ �k with K := � \ �′. We set

R := ��(1− ��′)PK.
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Note thatR = ��PK−����′PK =: R1+R2. By Lemma3.6 and (3.14) we haveR1 ∈ Rn

with n := c ln6(1+1/). It follows from the fact that the univariate rational function� from
Lemma 3.5 has only simple poles and by (3.14) together with Lemma 3.6 thatR2 ∈ Rm

with m := c ln12(1+ 1/) and henceR ∈ Rl with l�c ln12(1+ 1/).
We use Lemma 2.7, (3.16), and (3.18) to conclude that

‖�− R‖Lp(��\�′�) = ‖1− ��(1− ��′)‖L∞(��\�′�)‖�‖p
=
(
‖1− ��‖L∞(��) + ‖��′‖L∞(R2\�′�)

)
‖�‖p�c‖�‖p.

(3.20)

WriteK� := (� \ ��) ∪ [� ∩ (�′� \ �′)]. Then we have

‖�− R‖Lp(K�) � c‖�‖L∞(�)(|� \ ��| + |�′� \ �′|)1/p
� c�1/p‖�‖p�c‖�‖Lp ,

where we used Proposition2.6. This estimate and (3.20) imply

‖�− R‖Lp(K)�c‖�‖Lp . (3.21)

It remains to prove estimate (3.13). Let firstx ∈ �′. Then
|R(x)| � |1− �′�(x)||PK(x)|�3‖PK‖L∞(�′)

� 3‖PK‖L∞(�)�c‖PK‖Lp(K) = c‖�‖p, (3.22)

wherewe used again Proposition2.6. For the estimate of(Ms
T 1K)(x) (x ∈ �′) from below,

assume that� ∈ Tm for somem ∈ Z. Let � ∈ Tm be such that� ⊂ �. Then by (2.2) it
follows that|�|�c|�| and hence, forx ∈ �′,

(Ms
T 1K)(x) �

(
1

|�|
∫

�
|1K(y)|s dy

)1/s

�
( |K|
|�|
)1/s

�
(
(1− �)|�|
|�|

)1/s

�c > 0,

where we used (2.1). From this and (3.22), we infer

|R(x)|�c‖�‖p(Ms
T 1K)(x), x ∈ �′. (3.23)

Let nowx ∈ R2 \ �. Then using (3.17) and Proposition 2.6, we obtain

|R(x)| � ��(x)|PK(x)|�c‖PK‖Lp(�)
(1+ |x|)k−1
(1+ |x|)4�

� c‖�‖p 1

(1+ |x|)4�−k . (3.24)

Let B� be the disc inscribed in� (of radius 1/
√
3). Then using the definition of� above,

it is readily follows that

(Ms′
E�1�)(x)�(Ms′

E�1B�)(x)�
c

(1+ |x|)2/s′ �
c

(1+ |x|)4�−k . (3.25)
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On the other hand, by Theorem2.17, we have

(Ms′
E�1�)(x)�c(Ms

T 1�)(x)�c(Ms
T 1K)(x), x ∈ R2, (3.26)

where for the latter estimate we used that|�| ≈ |K| ≈ 1. Finally, combining (3.24)–(3.26),
we obtain

|R(x)|�c‖�‖p(Ms
T 1K)(x), x ∈ R2 \ �.

This estimate coupled with (3.23) yields (3.13).
Finally, by the maximal inequality and (3.13), it follows that

‖�− R‖
Lp(R

2\K)
�c‖�‖p,

which along with (3.21) yields (3.12). The proof is complete.�

Proof of Theorem 3.4. SupposeS ∈ �k
m(T ). Then by Lemma 3.7,Scan be represented

in the form

S :=
∑
�∈�̃

1K�PK� ,

where #̃��cm andK�◦ ∩K�′◦ = ∅ if � �= �′.
Let �K := 1KPK with K := K�. We apply the Lemma3.8 with � := �K ,  :=

exp(−( n
m
)1/12), and s := 1

2min{p,1} to infer that then there exists a rational function
RK ∈ Rl with l�c ln12(e + 1/) such that

‖�K − RK‖p�c‖�K‖p
and

|RK(x)|�c|K|−1/p‖�K‖p
(
Ms

T 1K

)
(x) for x ∈ R2 \K.

We setR :=∑
K∈�̃ RK . Clearly,R ∈ RN with

N�#�̃l�cml�cm ln12(e + e(
n
m )

1/12
)�cn.

ThusR ∈ Rcn.
Now using Lemma3.8, we have

‖S − R‖p =
∣∣∣∣∣
∣∣∣∣∣
∑
K

�K −
∑
K

RK

∣∣∣∣∣
∣∣∣∣∣
p

�
∣∣∣∣∣
∣∣∣∣∣
∑
K

(�K − RK) · 1K +
∑
K

RK · 1R2\K

∣∣∣∣∣
∣∣∣∣∣
p

� c

∣∣∣∣∣
∣∣∣∣∣
∑
K

(�K − RK) · 1K
∣∣∣∣∣
∣∣∣∣∣
p

+ c

∣∣∣∣∣
∣∣∣∣∣
∑
K

RK · 1R2\K

∣∣∣∣∣
∣∣∣∣∣
p

� c

(∑
K

‖�K − RK

)
‖pp
)1/p + c

∣∣∣∣∣
∣∣∣∣∣
∑
K

‖�K‖p|K|−
1
p (Ms

T 1K)(·)
∣∣∣∣∣
∣∣∣∣∣
p

.
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Applying the Fefferman–Stein maximal inequality (Proposition2.22) with q := 1 and
s := 1

2min{p, 1}< min{p, 1}, we obtain

‖S − R‖p � c

(∑
K

‖�K‖pp
)1/p

+ c

∣∣∣∣∣
∣∣∣∣∣
∑
K

‖�K‖p|K|−
1
p 1K(·)

∣∣∣∣∣
∣∣∣∣∣
p

� c′
(∑

K

‖�K‖pp
)1/p

= c′ exp(−(n/m)1/12)‖S‖p.

The theorem follows. �

Proof of Theorem 3.1.Assume thatp�1. The case 0< p < 1 is similar. ChooseSj ∈
�k
j (T ) so that‖f −Sj‖p�2�j (f, T )p, j = 1,2, . . . (see (2.25)) and set�
 := S2
−S2
−1,


�1, and�0 := S1. Evidently,�
 ∈ �k
2
+1(T ) and

‖�
‖p = ‖S2
 − S2
−1‖p�‖f − S2
‖p + ‖f − S2
−1‖p
� 2�2
(f, T )p + 2�2
−1(f, T )p, 
�1,

‖�0‖p = ‖S1‖p�2�1(f, T )p + ‖f ‖p.

Fix ��0. For
 = 0, 1, . . . ,�, we apply Theorem 3.4 withS := �
,m := m
 := 2
+1,
and

n := n
 :=
⌈
2
+1(�(�− 
) ln 2

)12⌉+ 1.

As a result, there exist rational functionsR
 ∈ Rn
 such that for
�1,

‖�
 − R
‖p � c exp
(
− (n
/2


+1)1/12
)
‖�
‖p�c2−�(�−
)‖�
‖p

� c2−�(�−
)
(
�2
(f, T )p + �2
−1(f, T )p

)
(3.27)

and

‖�0 − R0‖p�c2−��‖�0‖p�c2−��(�1(f, T )p + ‖f ‖p). (3.28)

Now we setR :=∑�

=0 R
. ThenR ∈ RN with

N �
�∑


=0
n
�

�∑

=0

[
2
+1(�(�− 
) ln 2/c∗

)12+ 1
]

� c

�∑

=0

2
[(�− 
)12+ 1]�c′2�, c′ = constant.
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By (3.27) and (3.28), we obtain

‖f − R‖p � ‖f − S2�‖p +
�∑


=1
‖�
 − R
‖p + ‖�0 − R0‖p

� 2�2�(f, T )p +
�∑


=1
c2−�(�−
)�2
−1(f, T )p

+c2−��(�1(f, T )p + ‖f ‖p)

� c2−��

( �∑

=0

2�
�2
(f, T )p + ‖f ‖p
)
.

Therefore, for any��0, we have

RN�(f )p�c2−��

( �∑

=1

2�
�2
(f, T )p + ‖f ‖p
)

with N� := c′2�.

This estimate readily implies (3.1).�

Proof of Corollary 3.3. This corollary follows readily from Theorem 3.1 together with
Proposition 2.10. �
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