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Abstract

We study nonlinear approximation iD,,(RZ), 0 < p < o0, from n-term rational functions. Our
main result relates-term rational approximation in, to nonlinear approximation from a broad class
of piecewise polynomials over multilevel triangulations allowing a lot of flexibility and, in particular,
arbitrarily sharp angles. This relationship and the existing estimates for spline approximation give a
Jackson estimate for-term rational approximation in terms of a minimal smoothness norm over a
large collection of anisotropic Besov-type spaces (B-spaces).
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

While the theory of univariate rational approximation is considerably well developed area
in Approximation theory (see, e.4g9]), the theory of multivariate rational approximation
is just emerging. The reason for this is that it is extremely hard to deal with multivariate
rational functions. Apparently rational functions of the foRv= P/Q, whereP andQ are
algebraic polynomials id variables (d >1), are powerful tool for approximation but very
little is known about them. It seems natural to consider nonlinef@rm approximation
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from the dictionaryR consisting of all functions oft? of the form

n
R = Z T, (1.1)
j=1

wherer; are partial fractions. I{8], it is considered the case when th¢s are of the form

d 1 +bl H - .
r(x) = Hu=l m‘T‘ﬁf The main result from [8] relates this type ofterm rational

approximation with nonlinear piecewise polynomial approximation over arbitrary dyadic
partitions of <.

In this article we obtain similar results for the more complicated cagetefm rational
approximation ink?, when ther;’s are of the form

6
aux1+byxo+c
)= [yttt e,
1+ (opx1 + Bux2 +7,)

with a,, by, cy, oy, ﬁu’ Tu € R. (1.2)
n=1

Our main result relates the bivariateerm rational approximation to nonlinear approx-
imation from a broad class of piecewise polynomials over multilevel nested triangulations.
To be more specific, let us consider a sequence of nested triangul@fipnsz such that
each levelr,, is a partition ofR? into triangles and a refinement of the previous l&igel ;.
DenoteT := | J,,7 Tm- Natural mild conditions are imposed on the triangulations in order
to prevent them from possible deterioration. These conditions, however, allow the triangles
in 7 to change in size, shape, and orientation quickly when moving around at a given level
or through the levels. In particular, triangles with arbitrarily sharp angles are allowed in
any location and at any level. L& (7) denote the nonlinear set of aliterm piecewise
polynomial functionsS of the form}_ .. 1 - Pa, Wwhere eachP, is a polynomial of
degree< k andA, consists oh triangles from7 . Further, denote by, (f, 7), the error
of L ,-approximation td from Zﬁ (7). Denote byR,(f), the error ofL ,-approximation
of f from n-term rational functions of form (1.1) with; of form (1.2).

Our main result says th&R, (f),) has the rate ofs, (f, 7)) or a better rate for any
0 < p < o0, k=1, and multilevel triangulatiory”. This relationship and the existing
estimates for anisotropic piecewise polynomial approximation (see [6]) give a Jackson
estimate fom-term rational approximation in terms of the minimal smoothness norm over
a wide collection of anisotropic Besov-type smoothness spaces (B-spaces).

Results of the same character are obtained also by Dekel and Leviatan [3] under the
restrictive condition that the piecewise polynomials are over triangulations satisfying the
minimal angle condition (regular triangulations, see Section 2.1) wherpl< co.

The main tools in proving our result are the famous result of Newman on the rational
uniform approximation ofx| and an anisotropic version of the Fefferman—Stein vector-
valued maximal inequality.

The outline of the paper is the following. In Section 2 we gather all necessary auxiliary
definition and results. Thus in Section 2.1 we give the definition and some basic properties
of the multilevel triangulations considered. In Section 2.2 we give the needed simple facts
about polynomials. In Section 2.3 we give some known facts about B-spaces and nonlinear
piecewise polynomial approximation. In Section 2.4 we provide everything we need about
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maximal functions. Finally, in Section 3 we state and prove our main resulisterm
rational approximation.

Throughout this article, for a sé& c R?, 1 denotes the characteristic functiorigfand
|E| denotes the Lebesgue measur&pivhile E° means the interior dt. For a finite set
E, #E denotes the cardinality &. For a vector (pointy € R?, |x| denotes the Euclidean
norm ofx. Positive constants are denoteddbyy, ¢/, . .. and if not specified they may vary
at every occurrence. Furthef,~ B means1 < A/B<cp, andA := B or B =: A stands
for “Alis by definition equal t@”. Whenever thed. ,-norm of a function is oIfik?, we write
briefly || - || ,, whereag| - ||, () denotes thd. ,-norm on a particular st C R2. The set
of all algebraic polynomials in two variables of total degreé is denoted by,.

2. Preliminary results
2.1. Multilevel nested triangulations

Here we introduce several typesratiltilevel nested triangulatiorfellowing the devel-
opment in[6]. Let 7 = |J,,.z Tm be a set of closed triangles Rf with levels(7,,)cz.
We say thatT is ahierarchical nested triangulationr simply triangulation of R? if the
following conditions are satisfied:

(a) Every levelT,,, m € Z, is a set of triangles with disjoint interiors which covié?, i.e.

R? = U A.

AET,

(b) ThelevelsT,).c7 of T arenested, i.e7,,+1 is arefinement of,,, obtained by refining
eachA e 7T, into subtriangles with disjoint interiors.

(c) Each triangleA € 7, has at least two and at mo&fy subtriangles ir7,,1, where
Mo >4 is a constant independentrof

(d) ThevalenceN, of each vertexw € V,, (the number of trianglea € 7, which share
v as a vertex) is less tha¥p, whereNp > 3 is a constant.

(e) No hanging vertices conditiomMo vertex of any trianglé\ € 7, lies in the interior of
an edge of another triangle frof),.

() For any compack c R? and any fixedn € Z, there is a finite collection of triangles
from 7,, which coverK, i.e.

K = U A where #\, < oo.
ACN, C T

We denote by, and&,, the set of all vertices and edges of triangles fromrespectively.
We setV := J,,c7 Vi @and€ :=,,c7 Em-

Note that any two triangles i either have disjoint interiors or one of them contains the
other. If A and A’ are two different triangles il andA’ C A, then we say thah is an
ancestorof A’, while A" is adescendanof A. Also if A’ € T,p1 andA’ C A, A € Ty,
thenA' is called achild of A. Now we define two types of triangulations by imposing more
conditions in addition to conditions (a)—(f) above.
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Locally regular triangulations. A triangulatio® = |,,.7 7w is called docally regular

triangulation of R? or, briefly, anLR-triangulationif 7 satisfies the following additional
conditions:

(i) There exists constants9r < p <1 (r< %1) such that for eaclh € 7 and any child
N e TofA,

rlAl< A< plA] (2.1)

(i) There exists a constant8 § <1 such that forany\’, A” € 7,, (m e Z) with an edge,

|A|

|A"]

0< <ot (2.2)

Forv € V,,, m € Z we denote by, thecell associated to, i.e. the union of all triangles
from 7, which havev as a common vertex. We denote ®y, the set of all cells generated
by 7., and® := ,,c7 Om.

Strong locally regular triangulations. A triangulatioh = | J,,. 7 is called astrong
locally regular triangulationof R? or, briefly, anSLR-triangulatiorif 7 satisfies the fol-
lowing two additional conditions:

(i) There existsa constantOr < p < 1(r< %) such that for each\ € 7 and any child
N e TofA,
rlAl< A< plAl (2.3)
(i) Affine transform angle conditiorithere exists a constat = (7), 0 < < n/3,
such that ifAg € 7,,, m € Z, andA : R> — R? is an affine transform that maps

one-to-one onto an equilateral reference triangle, then for evety7,, which has at
least one common vertex withg and for every childA € 7,41 of Ag, we have

min angle(A(A)) > f, (2.4)
whereA(A) is the image ofA by the affine transformA.
It can be proved (s€f2]) that condition (ii) is equivalent to the following condition:

(ii") There exists a constant® 61 <1/2 such that for any\’, A” € T, (m € Z) sharing
an edge,

lconv(a’ U A/ 1< 872, (2.5)
where con(G) denotes the convex hull & ¢ R2.
Note that condition (i) implies (2.2) witho; = 6. Therefore, each SLR-triangulation is
an LR-triangulation, however, the inverse statement is not true (see [6]).

Regular triangulations. By definition, a triangulatidn= |,z 7 is called aregular
triangulationif 7 satisfies the following condition:

(i) There exists a constaft = (7) > 0 such that the minimal angle of each triangle
AeTis2p.

Evidently, every regular triangulation is an SLR-triangulation but the converse statement
is not true.
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With the next remarks we clarify several important issues concerning different types of
multilevel triangulations.

(a) For each of the triangulations there are constants which are assumed fixed. We refer
to them agparameters. Thus the parameters of an LR-triangulatiod&y,eNo, p, J, andr
and the parameters of an SLR-triangulation &g No, p, J, r andp.

(b) The most important observation is that the collection of all SLR-triangulation with
given (fixed) parameters is invariant under affine transforms. More precisglis #n SLR-
triangulation inR2 andA is an affine transform d&?, thenA(T) := {A(A) : A eTlisan
SLR-triangulation with the same parameters. The LR-triangulations with fixed parameters
are also invariant under affine transforms.

(c) If T is an LR-triangulation and\’, A” € 7T, have a common edge, then it may
happen that\’ is an equilateral triangle (or close to an equilateral triangleytuhas an
uncontrollably sharp angle. Such a configuration on an SLR-triangulation is impossible,
however, at any level and location there can be triangles with uncontrollably sharp angles.
For more details, sdé].

(d) In an SLR-triangulatiofi” there can be an equilateral (or close to such) trianglat
any levelT,, with descendanta; > Ay O --- such that minanglg\ ;) — 0 asj — oo,
and also a sequentce{j)?‘;o C Tm With Ay = A® andA’j N A’Hl #0( =01,..)
such that minanglen’,) — 0 asj — oo.

(e) For an SLR-triangulatiofi, conditions (2.3)—(2.5) suggest geometric rates of change
of |Al, minanglg(A), and max edgéh) asA € 7, moves away from a fixed triangle
A’ € T,,. However, as it will be shown later in this section, the rates of change are powers
of the number of the connecting edges. A similar observation is true for LR-triangulations.

In the following we show howA|, |[max edg&A)|, and min angl€éA) may change as
A € T moves away and in depth from a fixed triangle. (See [6, Lemma 2.4] for the proof.)

Proposition 2.1. Let 7 be an LR-triangulation oR?. Suppose that’, A” € Ty,, m € Z,
and A" and A” can be connected by 2" intermediate edges froif,, with (pairwise)
common verticesThen there exisi1, Ay € T—2n,y With @ common vertex such that
A C ApandA” C Ao.

Lemma 2.2. Let7 be an SLR-triangulation d&2 with parameteif = (7),0 < f<x/3.

@ IfA, A €Ty,meZ,andA' N A" # @, then
nyt<|maxedgdA’)|/|max edgeA”)| <iy, (2.6)

wheren, depends only off and No.
() fAeTy,, A €Thir,andA’ C A, then

1< |max edgdA)|/|max edgeA’)| <15, (2.7)

wheren, depends only on the parametersjof

Proof. (a) It suffices to prove thatit’, A” € 7, have a common edge, then
Ny <|maxedgeA)|/|maxedgea”)|<no. 1o > 1. (2.8)
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Then, since every vertex can have valence at Mgs(2.6) follows withzn; = ngNO/ 2 by
applying the above estimaf&/p/2] times.

Suppose than’, A” € 7, have a common edge. Let; be an equilateral reference
triangle of side length one and latbe an affine transform which maps one-to-one onto
Ay. Write Ap := A(A"). Let S be the circle inscribed im\; and IetSIr be the circle
circumscribed around ;. Similarly, we letS;,” and s; be the circles inscribed in, and
circumscribed around,, respectively. Denote bgg.‘, r;' (j = 1, 2) the radii of the circles

Si S;F (j = 1, 2), respectively. Simple geometric argument shows that

rf = %3 and r, >2 sin [—; (2.9)
wheref is from condition (2.4) on the SLR-triangulations.

Write E := A—l(Sj‘), E;r = A—l(S;F), j =1,2. SinceA is an affine transform, then
A~lis also an affine transform and, therefoEFjT,, E;r (j = 1,2) are ellipses. Denote by
d;, d;.r, j = 1,2, (the lengths of) the major diameters of the above ellipses. Sinéds
an affine transform anEjE (j =1, 2) are images of circles, then

+ +
dy _
+ — +
d; )

Using this and (2.9), we obtain

df_rf 1

—=——=—S_——5 =M
d, ry 243 sing
We haveA’ C Ef andE, C A”, and hence
Imax edgeA")| <df” <nod; <nplmaxedgeA”)|,

which yields (2.8), using also the symmetry.

(b) The right-hand-side estimate in (2.7) follows immediately by (2.1) and the fact that
any triangleA € 7 can have at mos¥/g children. The left-hand-side estimate in (2.7) is
obvious. O

Theorem 2.3. (a) Let 7 be an LR-triangulation ofR? with parameter® < r < p <land
No. Suppose that’, A” € T,,,m € Z,and/A’ andA” can be connected by n intermediate
triangles(or edges)vith common vertices frofy,,. Then
, N !
cIlnﬂ < # <cint (2.10)
|A”
with s := 2Nglog,(p/r) andey := 6~ 0(p/r)2No.
(b) LetT be an SLR-triangulation d&2 with parametes = (7),0 < f<7/3.Suppose

thatA’, A € T,,,m € Z, and A" and A” can be connected by n intermediate triangles
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with common vertices froffy,. Then
max edgegA’
cz_lrf” < & <con* (2.112)
[max edg€A”)|
with u := 2Np 10g,(15) andcz := "IM%NO wherenq, 1, are from Lemma.2.

Proof. (a) See [6, Theorem 2.5].
(b) Choose'>1sothat2-1<n < 2. By Proposition 2.1, there exiat;, A» € Tn—2Ngv
with a common vertex such that ¢ A; andA” C A». Using (2.6), we have

Imax edgeA1)| <ni/max edgeAr)|.
On the other hand, applying (2.7) repeatedly, we infer

Imax edgeA2)| <175 |max edgeA”)|.

Combining these estimates, we obtain

Nov

Imax edgeA’)| < |max edgeA1)| <nyn5"® max edgeA”)|

which implies (2.11) since'’2t<n. O

Theorem 2.4. (a) Let 7 be an SLR-triangulation dR? with parameterss = (7), 0 <
p<m/3. There exists a consta®t < 9 < 1 depending only orf such that ifA € 7,
(me?),N € Thie, £=1,andA’ C A, then

9l < min angle(A’) <ot
~ minangle(a)

(b) Let7 be an LR-triangulation oR?. There exist constanfs< r1 < p1 < ldepending
only on the parameters df (see the definition of LR-triangulationsiyich that ifA € 7,
(m e Z), N € Tpiange, £=1,and A’ C A, then

Imax edgegA”)|
g MAXCTIRA )T ¢
Imax edge&A)|

(2.12)

(2.13)

Proof. (a) Sed6] (see Lemma 2.3).
(b) For the proof of the upper bound in (2.13) the argument is quite similar to the argument
of the proof of Lemma 2.7 in [2] and will be omitted.
The argument for the proof of the lower bound in (2.13) is simpler. SupposeT7,,,
A" € Tut1, @andA’ C A. Letemaxandep,,, be the largest edges af andA’, respectively.
Denote byh the length of the height temax in A and by’ the length of the height tef,,,
in A’. Further, letR and R’ be the radii of the circles inscribed it andA’, respectively.
A simple geometric argument shows that< 2 < 3R as well asR’ < 1’ < 3R’. Since
A’ C A, thenR’< R and hencé’ < 3h. We use this and (2.1) to obtain

(1/Drlemaxth = r| A< A< (1/Dlemadh’ < (3/2)lemaxlh

which implies|ej,a = (r/3)lemaxl Wherer is the original parameter of. This obviously
implies the lower bound in (2.13).00
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Stars. In order to deal with graph distances and neighborhood relations it is convenient
to employ the notion ofnth-level star of a set.
Definition 2.5. For any se c R? andm € Z, we define stdr(E) by
starl (E) := U{0 € ©,, : 0° N E # ) (2.14)

and inductively
stak (E) := stat (staf Y(E)), k> 1. (2.15)

When E consists of a single point, in slight abuse of notation, we shall write s{;,a(vc)
instead of staf, ({x}).

2.2. Local polynomial approximation

We shall frequently use the equivalence of norms of polynomials over various §&ts in
which we give in the following proposition. S¢@] for the proof.
Proposition 2.6. Let P € I1;, k>1,and0 < p, g <oo.
(a) For any triangleA,
1Pz, ) ~ 1AMPY9 P, o). (2.16)

wherec = ¢(p, q, k).
(b) If A andA’ are two triangles such thak’ C A and|A|<cp|A’], then

1P, ) <cllPllL,ans (2.17)

wherec = ¢(p, k, o).
(c) If AandA’ are two triangles such that’ ¢ A and|A|<c1|A/|, then

1P|z, a) Scl Pl avan = el AYP7Y4PI L (avans (2.18)
wherec = ¢(p, k, c1).

In the following, A° will denote an equilateral (reference) triangle of side one, centered
at the origin. We shall need an estimate on the growth of a polynofial asx moves
away from the origin.

Lemma 2.7. Let P € I1; and0 < p<oo. Then
[P0 <cllPllz, @@+ xD forx e R?, (2.19)

wherec = ¢(p, k).
Proof. Let P(x) = Y, axx*. Then forx € R?,

IPOIS Y lagllx* <k maxlaz)} (L + 2D <ell Pllz, e @+ D

o)<k

since all norms in a finite-dimensional space are equivaldnt.
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Forf e L,(E),E C R?, 0 < p<oo, andk>1, we denote by, ( f, E), the error of
L ,-approximation td from I, i.e.

Ex(f, E)p = Pig[k If = PlL,&)- (2.20)
We also denote by (f, E), thekth modulus of smoothness gfe L ,(E), defined by

wi(f. B)p := SUp[|A)(f. )L, k). (2.21)

heR?
where
ko vtk (k : ;
Al;l(f,x) = Zj:O( 1)j (/)f(x+Jh) if [)C,X.—i-kh]CE,
0 otherwise

and[x, x + kh] denotes the line segment betweesmndx + kh.

Proposition 2.8(Whitney).Let f € L,(A) for some triangleA, 0 < p<oo, andk > 1.
Then

Ex(f, D) p<cwr(f, A)p, (2.22)
wherec = ¢(p, k).

We refer the reader 6] for the proof of Proposition 2.8.
2.3. Nonlinear piecewise polynomial approximation and B-spaces

Inthis section we provide the basic results of the theory of nonliméarm approximation
from piecewise polynomials generated by multilevel nested triangulations, developed in [6].
This theory provides important ingredients for our theory-0érm rational approximation.
B-spaces. We begin with the definition of a collection of spaces (B-spaces) needed for
the theory of nonlinear piecewise polynomial approximatioﬂj;mz) (0O< p <o0).In
[6] they are termed “skinny” B-spaces.
Taking into consideration our further needs, we shall be assuming in the followirify that
is an LR-triangulation or an SLR-triangulation (see Section 2.1). Throughout this section
we assume that@ p < oo, a > 0,k>1, andr is determined from 1y := o« + 1/p.

Definition 2.9. The B—spaceéﬁ?"(T) is defined as the set of all functions LP(RZ)
such that

1/t

Iflgser = | D_ A w(f. )07 | < oo, (2.23)
AeT

wherewy (f, A) is akth modulus of smoothness bon A (see (2.21)).

Whitney’s estimate (Proposition 2.8) implies

1/t
£ ot (T) ~ (Z(mr“Ek(f, A):)f) . (2.24)
AeT
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Nonlinear piecewise polynomial approximation. IEéjt(T), k>1, denote the nonlinear
set of alln-term piecewise polynomial function of the form

S = Z TA - P,
AcA,

wherePy € Iy, A, C T, #A, <n, andA, may vary withS. We denote by, (f, 7), the
error of L ,-approximation tof € L ,(R?) from =k (7):

an(f, T)p = s ng) If—Slp- (2.25)

n

In [6] for the characterization of the approximation spaces generatéd,loy, 7)) the
machinery of Jackson—Bernstein estimates and interpolation are used.

Proposition 2.10(Jackson estimate)lf f € B%*(T), then

ou(f. T p<en I fllgser

with ¢ depending only on p, k, and the parameters of.

Proposition 2.11(Bernstein estimate)lf S Zﬁ (T), then
ISl gty <en™ |11l (2.26)
with ¢ depending only on p, k, and the parameters of.

Denote byA! := A}}(L,,, T) the approximation space generated(by(f, 7),), con-
sisting of all functionsf € L, such that

00 1/q
” 1
1Az o= 1Sl + (E (n’on(f))q;) <00 (2.27)

n=1
with the ¢,-norm replaced by the sup-normyjif= oco.

The following characterization of the approximation spad:ééollows in a standard way
by Proposition®.10-2.11.

Proposition 2.12.1f 0 <y < a and0 < ¢ < oo, then
Ag(Lp, T) = (Lp. B (D)1,

with equivalent normsHere (X, Y), , denotes the real interpolation space between the
spaces X and ¥see e.g[1]).

Denote
Gn(f)p = |r7]j Gn(fs T)pv

where the infimum is taken over all LR-triangulatiofiswith fixed parameters. The fol-
lowing result is immediate from Propositi@10.
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Proposition 2.13. Supposeénf I fllgax(y < o0, where the infimum is taken over all
LR-triangulations with fixed parametetand let f € L,,(IRZ). Then

Un(f)p <en™? |g_f ”f”ng(Ty
For more details, sdé].

2.4. Maximal functions

In this section we introduce and explore two types of maximal functions. They will be
our main vehicle in proving out results for nonlineaterm rational approximation.

Definition 2.14. Let 7 be a multilevel triangulation ifit? (for the definition, see Section
2.1). Fora Lebesgue measurable funcfiatefined oriR?, ands > 0, we define the maximal
function M- f by

1 1/s
(M¥f)(x) :== sup (E/olf(yﬂsdy) (2.28)

0€®: xel
where the sup is taken over all ceflE © containingx.

We next associate with any triangle c R? a collection of ellipsess, which will be
used in the definition of another type of maximal function. kétbe a fixed equilateral
reference triangle of side length one. DenoteRdythe circle inscribed im\® and by B+
the circle circumscribed arount®.

For a given triangle\, let A be an affine transform which mapgs’ one-to-one onta\.
DenoteE~ = A(B™) andE™ = A(B™), which are apparently ellipses. It is also readily
seen thaf ~ can be obtained by dilating and shiftidy™. Now, we let & denote the set of
all ellipses inR? which can be obtained by dilating and shiftifig” or E.

Definition 2.15. Suppose) is a fixed triangle ifk% ands > 0. For any Lebesgue measur-
able functionf, we define the maximal functiQMfSAf by

1 1/Y
(Mg, /)(x):= sup (—/ If(y)lsdy> (2.29)
s lEl JE

Ec€p:xeE

where the sup is taken over all ellipsés= £, containingx.

We first note that ifA is an equilateral triangle and= 1, thenMg f is the standard
maximal function.
If s = 1, we denoteMr f := M7} f and Mg, f := Mg, f. Note thatMs-f =

(M| fIH5.

Remark 2.16. One of the most important properties of the maximal functié$- f and
Mng f is that they are invariant under affine transforms. Thus i§ an arbitrary affine



K. Park / Journal of Approximation Theory 136 (2005) 60—83 71

transform onR?, then
(MFF)(x) = My fFATNAR),  x € R,

whereA(T) := {A(A) : A € T}. The maximal functionsMgAf are invariant in a similar
sense.

Recall that if7 is an SLR-triangulation (LR-triangulation), thé(7") is also an SLR-
triangulation (LR-triangulation) with the same parameters. Consequently, the set of all
maximal functiong M=}, where theT’s are SLR-triangulations with the same fixed pa-
rameters is invariant under affine transforms.

The next theorem provides a very important relation between the above defined maximal
functions.

Theorem 2.17.Let T be an SLR-triangulation and Ist > 0. Then there exists' > 0,
depending only on s and the parameter§ofuch that ifA € T, then

(M 1)) ScMFIA) @), x € R2, (2.30)

where ¢ depends only on s and the parametefE.dieres’ (s’ < s) can be defined e.g. by
s" =15 In(1/py)/lIN(L/p1) + 3No In(1/19)], whered and p, are from Theoren2.4.

Proof. An important ingredient in the proof of this theorem will be the fact that (2.30) is
invariant under affine transforms (see Remark 2.16).
Supposer € 7, (m € Z) and letx € R?. Two cases are to be considered here.
Casel:x € star,%,(A). Evidently, (MgAﬂA)(x)g ITallL,, = 1. On the other hand, by

the definition of sta}n(A) in (2.14) there exists a cdll € 7,, such thatt € 0 andA c 0.
HereA is one of the triangles iff,, which make ug). Then using Definition 2.14 we obtain

1
10]

where we used that| < c¢|A| which follows by conditions (i)—(ii) on SLR-triangulations
(see also (2.1)—(2.2)). The above estimates imply (2.30).

Case2: x € R?\ starl(A). Let| (/<m) be the minimum level such that € R? \
star}(A). The existence of such leveK m follows by property (f) of SLR-triangulations
and Proposition 2.1. Thene star;_;(A).

Denote byAg the unique triangle iff; such thatA C Ag. Since (2.30) is invariant under
affine transforms, we may assume tiatis an equilateral triangle of side length one. Let
emax be the maximal edge of and writea := |emax|- AlSO, leth be (the length of) the
height inA to emax.

Sincex € starll_l(A), then there exist € ®;_1 such thatr € 0 andA c 0. By
conditions (i)—(ii) on SLR-triangulations and sin¢g) is an equilateral triangle of side
length one, it follows tha| ~ 1. Consequently,

1 1/s
(MFIA)(x) > (E/(;H]A()’)de) 2(

1/s
(M12)(x) > ( /emu(ywdy) > (lal/10)Y =c > 0,

|A]

1/s
W) >C|A|1/S>C/(ah)l/s.

(2.31)
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To estimate(Mfa’AﬂA)(x) from above, we first show that := dist(A, x) > ¢; for some

constantc; > 0, where distA, x) is the Euclidean distance fromto A in R2. Since
A C AgandAp € T, then staf(A) = star(Ag). Therefore, it suffices to show that
dist(Ag, y) >c1 for all y from the boundary oR? \ starll(Ao). But the boundary oRR? \
starl(Ag) is obviously the same as the boundaXstar!(Ao)) of stari(Ag). A simple
geometric argument shows that the Euclidean distance betwgemd 6(star}(Ao)) is
bounded below by the minimum height to an edge in a triangle ffowhich has a common
vertex with Ag. But by condition (ii) on SLR-triangulations, minangl&’) > f > 0 and
hence| min edge(A’)| > c¢(ff) > O for all trianglesA’ € 7; which have a common vertex
with Ag. Here we use that\g € 7; is an equilateral triangle of side length one. These
inequalities yield that the minimum height to an edge in a triangle figwhich has a
common vertex withAg is bounded below by a constant > 0 depending only orf,
which in turn implies distA, x) > dist(Ag, d(star (Ao))) > c1.

Let A be an affine transform which maps an equilateral reference trigrfgtee-to-one
onto A. Let E* be the images of the inscribed (—) and subscribed (+) circles®ofsee
the construction above Definitich15). Evidently the major diameters Bf- are~ ¢ and
the minor diameters af* are~ h. Let E* be the smallest ellipse ifi, such thatc € E*
andA N E* # (. Denote byD andH the major and minor diameters &f*. Evidently,
D>d >cy,whered := dist(A, x). SinceE* can be obtained fro™ (or E~) by a dilation
and a shift, therH /D ~ h/a and hencéE*|>cDH >c¢D?h/a>cd?’h/a>c"h/a.

By the definition ofE*, for any ellipseE € £ such thate € E andA N E # ¢ we have
|E|>|E*|. Then by Definition 2.15, it follows that

, 1 1/s
Mz Tr)(x) = sup (—/ ﬂA(x)dx>
4 E|lJ E

EcEpn:xeE, ANE#)

1/s 1/s
A A /
) <||E||> < (a|h |> Seaa (#32

Taking into account (2.31)—(2.32), it remains to show tifat < c(ah)™/* or equivalently

a?s' =25 Le(hja)rs. (2.33)
Denotev := m — . Using Theorem 2.4(b), it follows that
a = |maxedg&A)| gpgv/3N°J|max edgeAo)| = p[lv/gN‘”. (2.34)
Let o« := minangle(A). By Theorem 2.4 (a)y > 9"min angle(Ag) > ¢, which yields
h/a>(1/2) sina> (1/m)oa=cd’. (2.35)

We are now prepared to show that (2.33) holds truefv0< 6 Ny, then by (2.34)—(2.35)
we haver <1 andh/a > c. Hence (2.33) holds with some constant 0 depending only on
sand the parameters @f. Suppose > 6 Np. Then[v/3Np] > v/6 Ng and using (2.34)—(2.35)
we obtain

a2/s'=2/s <p[l\"/3No](2/S/—2/S) gp(lv/3N0)(1/S’—1/S) — /s gc(h/a)l/s,

where the constant > 0 is again depending only ®and the parameters Gf. Thus in
both cases (2.33) holds true and this completes the praof.
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The maximal inequality. Here we extend the uguamaximal inequalities (boundedness
of maximal operators) to maximal functions generated by multilevel nested triangulations.
In essence these are well-known results. We present in the form that we need.

Suppose that : R” x R" — [0, o0) is aquasi-distance ifRR", i.e.d satisfies

@ dx,y) =0 x=y,
(b) dx,y)=d(y, x),
© dix,z2)<cldx,y)+d(y,z) withe>1. (2.36)

We denote byB(y, a) (a > 0) the “ball” with respect to this quasi-distance of radaus
centered ay, that is,B(y, a) := {x : d(x, y) < a}.
In this setting the maximal function (operata¥)® is defined by

, 1 Ls
(M* f)(x) :== sup (—f lfI dy> ; (2.37)
B:xeB |B| B
where the infimum is over all balB containingx.
The Fefferman-Stein vector-valued maximal inequality (5e¢E0]) reads as follows:

Proposition 2.18.1f 0 < p < 00,0 < g<o0,and0 < s < min{p, ¢}, then for any
sequence of functiong;)72, on R?

o l/q o
> IME <c [ 1519 (2.38)
j=1 j=1 »

where ¢ depends only ong,and s.

As a matter of fact, inf5,10] the maximal inequality (2.38) is stated and proved in the
cases = 1 but sinceM® f = (M?|£|*)1/* the proposition follows.

Definition 2.19. For a given LR-triangulatiory, we define a quasi-distande- : R? x
R? — [0, 00) by
dr(x,y):=inf{|0] : 0 € ® andx, y € 0}. (2.39)

Lemma 2.20. The mapping/s : R? x R? — [0, oo) defined in(2.39)is a quasi-distance
in k2,

Proof. Condition (a) on quasi-distances (see (2.36)) follows by the properties of the LR-
triangulations (see Section 2.1). Condition (b) is obvious.

To prove that condition (c) holds lat y, z be three distinct points if®2. Assume that
d(x,z) = |0'|, where®' e ©,, is a cell containing, z. Similarly letd(y, z) = |0”] for
some cellf” € ©, which contains botly andz. Without loss of generality we assume
thatm <n. Obviouslyx andz lie in triangles in7,, with a common vertex (or in the same
triangle). Sincen <n, the same is true foy andz. In other words there exist triangles
A1, Ao € T, which can be connected with 2 intermediate triangles frorf,, (with
common vertices), so that € A1, y € Aj. By Proposition 2.1 that there exists €
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®,—2n, Such thatA1, Ap C 0 and hencel(x, y) <|0|. By properties (2.1)—(2.2) of the
LR-triangulations there exists a constamt= c(d, r, No) such thatd| < c|¢’'|. Consequently,
d(x,y)<c(d(x,z) +d(z,y)). U

Denote by/\/lf,T the maximal function generated by the quasi-distance defined in (2.39).

Lemma 2.21. If T is an LR-triangulationthen for any measurable function f
M fx) ~ My f(x), xelR? (2.40)
where the constants of equivalence depend only on s and the paramefers of

Proof. Fix aballB = B(x, d), x € R, 6 > 0. Let m be the minimum level such that for
somel’ € ©,,, we have xe 0 C B. Since every) € ®; with I > m is contained in a cell
from ®,,,

Bx.o)= [J 0c |J 0cstadw.
0] <0, xel 0€®,,, xeb

But any two triangles fronT,, which are contained in stﬁ(x) can be connected by 22
intermediate edges frof),. Then by Propositio.1 it follows that staﬁ; (x) C 0" forsome
0" € Op_4an,- Thust' C B C 0" with 0’ € ©,, and” € ©,,_an,. By properties (i), (ii)
(see (2.1), (2.2)), we conclude tHat | < c|0'| with ¢ depending om, &, andNo.

In the other direction, for any cell € ®,, (n € Z) with “central” vertexv, we have
0 C star?(v). Letd’ = max{|0| : 0 C sta’(v)}. Then

0c B(v,d)= U 0° C sta(v),
10°]<d', ved®

which yields|B(v, §")| <c|0]|. This completes the proof.[]

We now couple PropositioR.18 with the above lemma to obtain the following modifi-
cation of the Fefferman—Stein maximal inequality:

Proposition 2.22. Let 7 be an LR-triangulation o®?. If 0 < p < o0, 0 < ¢ <oo, and
0 < s < min{p, ¢}, then for any sequence of functio@@).‘;‘;1 on R?

1/q

o0 1/q o0
(Z IMSTij") <c (Z |f,»|") : (2.41)
j=1 j=1
p

p
where ¢ depends only on@,s, and the parameters of.

3. Main results

We denote byR, the set of alh-term rational functions ofk? of the form

n
i=1
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where each; is of the form

o ﬁ aux1+byxz +cy
’ 1+ (apx1 + Bx2 +7,)°

pn=1

with ay, by, ¢, oy, ﬁu’ Tu € R.
Denote byR, (f), the error ofL ,-approximation td from R,

Rn(f)p = Rigfz If =Rl p.

Clearly, eachR € R, depends ong 36n parameters an®,, is a nonlinear set, however,
Ry = Ry (¢ #0)andR,, + R = Ru+m- A fundamental property oR,, is that it is
invariant under affine transforms, i.eRfe R,,, thenRoA € R, for every affine transform
A.

Our primary goal in this chapter is to relateterm rational approximation ang-
term piecewise polynomial approximation. We shall use all the notation from Section 2.3.
Throughout this section, we assume tiids an SLR-triangulation oR? (see Sectiog.1).

The following theorem contains our main result.

Theorem 3.1. Let f € L,(R?),0< p < 0o, o > 0,andk>1.Then

1/p*
1 * *
Ry (f)p<cn™ (Z nj(ﬂl“am(f, T)p)? +||f||§ ) , n=12,..., (3.1)

m=1

wherep* = min{1, p} and c depends only an p, k, and the parameters ¢f.

It is an important observation that in Theor@d there is no restriction om > 0. The
next corollary follows immediately from the above theorem.

Corollary 3.2. Ifg,(f, T), = O(n~7) foranarbitrary SLR-triangulatiory, 0 < p < oo,
andy > 0,thenR,(f), = O(m™").

Combining the Jackson estimate fotterm piecewise polynomial approximation from
Proposition2.10 with Theorem 3.1, we infer the following result.

Corollary 3.3. If f € (" BX*(T), wherex > 0, 1/t :=a+1/p,0 < p < oo, then
Ry(f)p<en™ ian £l Bo (1) (3-2)
where the infimum is taken over all SLR-triangulation with some fixed parameters.

We shall deduce Theoregl from the following result.
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Theorem 3.4. For eachS € Z’,‘n (T),m>1,andn > 1, there existsR € R,, such that
IS = Rll, <c exp(—/m)* IS, (3.3)
where ¢ depends only onp,and the parameters of.

The main vehicles in the proof of Theore® will be the anisotropic version of the
Fefferman—Stein vector-valued maximal inequality which was given in Proposition 2.22 and
the following lemma which rests on the result of Newman [7] on the rational approximation
of |x|.

Proposition 3.5. For eachy > 0, 0 < 0 < 1, and i a positive integerthere exists a
univariate rational functiors such that

dego<cIn(e+1/y)In(e +1/0) + 4pu, (3.4)
0<1—o0(t) <y for|r|<1—0, (3.5)
4u
< 1 > .
0<o(®) < /(1+|t|> for|r]>1 and (3.6)
0<o(t)<1 forre R, 3.7

where c is an absolute constaMoreover,s has only simple polest follows by(3.6)that
if o = P/Q (P, Q polynomialsthendeg Q > deg P + 4u.

For later use, we include the following lemma.

Lemma 3.6. Supposesr = P/Q is a univariate rational function degreel/ such that
degQ > degP + k + 1 (k>1) and ¢ has only simple poledet P € IT;(R?). Suppose
that A := [v1, v2, v3] is a triangle in R? and aix1+bixo+c¢ =0@G =1,2,3)is an

equation of the straight line containing the edge/ofopposite to the vertey;. Denote
T;(x) = ajx1 + bjx2 + ¢;. Then

3
[P eRps. (3.8)

i=1
Proof. Eachx e R? has a representation of the form

x = b1(x)vy + ba(x)v2 + b3(x)v3, bi(x) + b2(x) +b3(x) =1,

whereb1(x), b2(x), andbz(x) are thebarycentric coordinatept] of x with respect ton. It
is readily seen thai; (x) = A; T; (x). Then the Bernstein—Bezier representatioP@f) is
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of the form
Pxy= D cypybr(0)ba(x)Pba(x)?
0 atpty<k
= > dypy i) T2 Ta(x).
0< atp4y<k
Therefore,
3 ~
[TeTmenPw)
=1
= Y dyp [T (TN T2 ()P o (T2 () T3(x) 0(T3(x))].
0< a+p+y<k

Since de@) > degP + k + 1 ando has only simple poles thef (x)*a(T1(x)) has a
representation of the form

M1
T1(x)*o(Ta(x) = Y

v=1

uryTi(x) +viy
1y + (T1(x) + Sl,v)2

Evidently, To(x)Pa(To(x)) andT3(x)" a(T3(x)) have similar representations. Consequently,

ﬁo‘(T(x))f’(x) = Z d ﬁ i ujyTj(x) +vjy
' wh tiw + (T (x) + 57.)2

i=1 0< a+p+y<k j=1v=1
c® 3
_ Z 1—[ ai X1+ bi,,ux2 + Cipu
- . . )2
it ie L Gt Brya 4954

wherea; , bi u, i, % s Bi o Vi, € R. The proof is complete. [

With the next lemma we show that every piecewise polynomial funcﬂ.‘ienZ’,j (7T) can
be represented as a piecewise polynomial functiorien non-overlapping “rings”.

Lemma 3.7. Supposes := > ,.p 1aPa, wherePy € I, A C T, and#A<n.Then S
can be represented in the form

S = Z ﬂKAPKA» (3.9)
Aeh

whereA C T, #A <cn with ¢ depending only on the parametersjgfeach®“ring” K is
ofthe formKy = Aor Ko = A\ A, A €T, andKZl NKZ, =0 if Ap# Ao,

Proof. Since the levels df are nested, there is a natural tree structufg induced by the
inclusion relation. Namely, i1, Ap € T thenAy C Ay or Ap C AporAfNAS =
The setA generates a subtreeTn Let 7, be the set of all triangle& € T for which there
exist two trianglesh1, Ao € A such thatA; € A C Ag. Clearly,A C Ty.
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We shall make the distinction between several types of trianglég, inVe say that
A € Tp is aleafin T if A does not contain any other triangleR. We denote by\, the
set of all leaves in\. Evidently,A; C A.

We say thatA € T, is abranching trianglefor T, if A has at least two children iy,
i.e., if at least two children oh in 7 lie in A or have descendants i We denote b\,
the set of all branching triangles ih. We also denote by, the set of all children i7" of
branching triangles. We exterdto A:=AUA,U A, Itis easy to see that in every tree
the number of the branching elements does not exceed the number of the leaves. Therefore,
#Ap <#A;<n and #\) < cn since the number of children of a triangle is boundedhy
Thus #\ <en.

We denote by\, the set of all leaves in the trélg, U A,y.

For each triangle\ A \ (Ap U A¢) we denote byA the unique largest triangle ¢ A
such thatA € A andA # A. Finally, we introduceings generated by as follows. For
A € A, we define

1] if AeAy,
Ka:i=4 A\A I AeA\ (A UAY),
A if AeAy.

Itis readily seen thak 3 NK3 = #if A1, Az € AandAg # Az. Also, since all children
of branching triangles belong b, we have

A= |J Ky, seA (3.10)
ANehA.n'ca
and, hence,
UJa=U ka (3.11)
AeA NeA

Evidently,Sis a polynomial of degree: k on each ringk 4 and therefore (3.9) holds.(]
The next lemma provides the main step in the proof of Theorem 3.4.

Lemma 3.8. Supposep := g - Px, whereK = A\ A", A C A, AN € T, and
Px € I, k>1.Then forA > 0 ands > O there exists a rational functioR € R; with
[<c In*?(e 4 1/7) such that

llp = Rllp <cZllgll, (3.12)

and
1
IR < cAK| 7 ol ,(MFg)(x) for x e R*\ K, (3.13)
where ¢ depends on R, s,and the parameters of.

Proof. Let A® be an equilateral reference triangle with side length one, centered at the
origin. Denote byvi, vz, and vz the vertices ofA°. Let I3 be the straight line irR?
throughv; andvy. Also, Ietlg“ be the line throughiz which is parallel to/; and letS3
denote the strip bounded by andi;. We similarly define the lines , /; (j = 1,2) and
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the stripsSy, S». Further, we denote by; (j = 1,2, 3), the linear function of the form
Tj(x) = ajx1 + ajxz + a}, so thatT; (;) = —1andT; (zj) =1.

For the givens > 0, we select’ so that 1/5 := 1/s + 3Np In(1/9)/[2s In(1/p],
whered andp, are the constants from Theor&mn (see Theorem 2.17).

Leto be the univariate rational function from Proposition 3.5 applied with 4, § := A?
andu := [(k + 2/s")/4] + 1. We definecae (x) := Hi3=1 o(T; (x)). By (3.4), we have

1 1 . 1 .
dega<cln e—l—z In e—l—;b—p +4u<clin e+z , c:=c(k,s, p).
(3.14)

By (3.7), it follows that
0<kno(x) <1 forx e R% (3.15)

DenoteA? := (1—§)A°,i.e.AS = {x € R*: x = (1-J)y, y € A®}. Then (3.5) implies
3

0<1—Kkpe ()< Y (1= 0(Ti(x)) <34, x €AY, (3.16)
i=1

Letx € R2\ A°. If |x| <2, then by (3.6) we haveae(x) < c/. Let x| > 2. By the
symmetry we may assume tHatx) > 1 fori = 1,2, or 3. Then sincéx| <cdist(x, S;),
we have

1 A 1\
)< TN<Leh| — ) < .
Kae () <o (T (x)) < c/ (1+dist(x7&)) ci<1+|x|>

These estimates imply that

4u
Kao(x) <c ( ) . xeR?\ A° (3.17)

1+ |x|

Clearly the statement of the lemma is invariant under affine transforms (see R2a@jrk
So, without loss of generality we shall assume thé an equilateral triangle of side length
one, namelyA = A°. Suppose\’ C A is any triangle. Let\s := A§ := (1 — 6)A°. Set
KA ‘= KA°.

Let A be an affine transform mapping one-to-ofeonto A§. ThenA‘l(Ag) = A
DenoteA := A~1(A%). ThenA’ ¢ A5 and itis readily seen thans \ A'[ <.

Now, we definecar := ka0 o A, the composition of - andA. By the properties ok a-
andA it follows that

0<ka(x) <1 for xeR? O0<1—kp(x)<3L for xeon (3.18)
and
K (x)<ch for x e R%\ A (3.19)
Letp := 1k - Pk, P € Il with K := A\ A’. We set

R = KA(]. — KA/)PK.
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Note thatR = kp Pgx —Kaka Px =: R1+ Ro. By Lemma3.6 and (3.14) we havR; € R,
with n := ¢ In8(14-1/). It follows from the fact that the univariate rational functiefrom
Lemma 3.5 has only simple poles and by (3.14) together with Lemma 3.&thatR,,
with m := ¢ In*2(1 + 1/2) and henc&® € R; with [ <c In12(1+ 1/4).

We use Lemma 2.7, (3.16), and (3.18) to conclude that

o = RllL,anny =11=ra@=ra)llanapllelly

= (12 = KallLwap + Il @2 )19l <cAlol.

(3.20)
Write K5 := (A \ A5) U[A N (A \ A)]. Then we have
o — RllL,ky) < cl@lloa) (AN Asl+ A5\ AP
<Pl <cillol,,
where we used Propositi¢h6. This estimate and (3.20) imply
le = RllL,x)<cilelL,. (3.21)
It remains to prove estimate (3.13). Let fitst A’. Then
IR()| < [1— w5 ()| Pk () <3 Pi Il Lo (a1
< 3Pk | L) S PNl L, k) = cAllollp, (3.22)

where we used again Propositidi6. For the estimate QJ’MXTH k) (x) (x € A) from below,
assume that € 7, for somem € Z. Let6 € T, be such that\ C 6. Then by (2.2) it
follows that|0| <c|A| and hence, fokx € A/,

1 1/s IK| 1/s
M > — 1 Sd > (2L
(MFTk)(x) <|0| /9| kI y> (|9|>

_ 1/s
> (%) Se=0,
1A

where we used (2.1). From this and (3.22), we infer
IR <cAlloll,(MFTx)(x), x e (3.23)

Let nowx € R?\ A. Then using (3.17) and Proposition 2.6, we obtain
(1+ |xpet

IR < Ko OIPK IS AN Prllyor =g

< Ci||(P||pW. (3.24)

Let B, be the disc inscribed in (of radius 14/3). Then using the definition qf above,
it is readily follows that
c Cc

> .
L+ x2S 7 (1 + |xtnk

(M, 1)) = (Mg, 15,)(x) > (3.25)
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On the other hand, by Theoreil7, we have
(ME 1)) SeME2) (@) ScMH (), x € R, (3.26)

where for the latter estimate we used thiat~ | K| & 1. Finally, combining (3.24)—(3.26),
we obtain

IR cAlloll,(MFIK)(x),  x € RP\ A

This estimate coupled with (3.23) yields (3.13).
Finally, by the maximal inequality and (3.13), it follows that

o — R”LP(RZ\K) <C}v||§0||p»
which along with (3.21) yields (3.12). The proof is completé]

Proof of Theorem 3.4. Supposes < Z’;,(T). Then by Lemma 3.7 can be represented
in the form

S = Z ﬂKAPKA,
NN

where A <cm andKp° N Kp° =B if A £ A
Let o = 1x Pk with K := Ka. We apply the Lemm&.8 with ¢ := ¢g, 4 :=
exp(—(2)1/12) ands := min{p, 1} to infer that then there exists a rational function
Rk € R; with [ <c Int2(e + 1/2) such that
lox — Rellp <cillogllp
and

Rk (0| <K ™ Pllpgll, (M1 ) @) forx e R\ K.

We setR = ZKe[\ Rk . Clearly,R € Ry with

- na1/12
N<#AI<cml<cm |n12(e+e(ﬁ) )y<cn.

ThusR € Rey.
Now using Lemma3.8, we have

IS=Rllp, =D ox —Y_ Rk
K K p
< Z((PK—RK)'ﬂK+ZRK'1]R2\K
K K »
<c||d ok — Ro) Tk || +e||d Re - Tk
K K

p p

1/p
<e (Z llok — RK> 15)"" +c2
K

S ok Il K177 (M5 0C)
K

p
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Applying the Fefferman—Stein maximal inequality (Propositth@2) withg := 1 and
s == min{p, 1} < min{p, 1}, we obtain

1/p
IS = Rllp < c4 (Z ||<pK||£> +cl
K

_1
D loxlplKIT 71k ()
K

p

1/p
< (Z log ||§) = ¢ exp(—(n/m)1)||S]l .
K

The theorem follows. [

Proof of Theorem 3.1. Assume thap > 1. The case < p < 1 is similar. ChooseS;
(T sothatl £ — Sl , <20, (f. T)p, j = 1,2,...(see(2.25)) and set, := Sz — Sp-1,
v>1, andg, := S1. Evidently,¢, € £5,.,(7) and

loyllp = 1S2e = Sp-1llp SILf = S2vllp + I1f = S22l
< 20—2"(]“9 ﬂp+20-2"*1(f’ T)pv V>ls
loollp = 1181l p <201(f. T)p + 11 flp-

Fix ©>0. Forv=0,1,...,u, we apply Theorem 3.4 wit§ := ¢, m := m, := 2'+1,
and

ni=ny = {2“’1(0((“ —vIn 2)12—| +1.

As aresult, there exist rational functioRs € R, such that forv > 1,

loy = Rullp < cexp( = (1,/2 ) g, ], <274,

< 2 =) (02"( £.T)p + o, T),,) (3.27)

and

lpo — Rollp <2l @ollp <27 (01(f, T)p + 1 f 1l p)- (3.28)

Now we setR := Y/ _; R,. ThenR € Ry with

K u " 12
v _ *
N < ?:0: n < ;:O: [2 (ot(,u win2/c ) 4 1]
u

<c Z 2'[(u— P +11<2", ¢ = constant
v=0
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By (3.27) and (3.28), we obtain

u
If = Rllp < If = Saullp + Y Ny = Ryllp + lloo — Rollp
v=1

u
<200 (f.Tp+ Y 2" Vopa(f. T))y
v=1

+c2 " (01(f. Tp + 1)
u
<2 Y 20 (£, Ty + IS Ny
v=0

Therefore, for any: >0, we have

u
RN, (f)p <2 (Y 260 (£, T)p + £, | with Ny = /2%
v=1

This estimate readily implies (3.1).J

Proof of Corollary 3.3. This corollary follows readily from Theorem 3.1 together with
Proposition 2.10. [
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